Skip Nav Destination
Close Modal
By
Henry Bakemeyer
By
Brian V. Smith
By
American Foundry Society Technical Department
By
John Campbell, József Tamás Svidró, Judit Svidró
By
Charles D. Nelson, Wayne Rasmussen, John Jorstad
Search Results for
pattern production
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1414
Search Results for pattern production
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Stages of mold production in the V-process. (a) Mold pattern. (b) Pattern p...
Available to PurchasePublished: 01 December 2008
Fig. 4 Stages of mold production in the V-process. (a) Mold pattern. (b) Pattern placed in a hollow pattern carrier. (c) A thin sheet of plastic film is heated and vacuum fitted to the pattern. (d) Vacuum is applied to shrink wrap thin plastic film around the pattern. (e) The film-covered
More
Image
Generalized casting costs versus production quantity for four pattern mater...
Available to PurchasePublished: 01 December 2008
Image
Production of a shell mold by the dump-box method in which pattern and dump...
Available to PurchasePublished: 01 December 2008
Fig. 9 Production of a shell mold by the dump-box method in which pattern and dump box are rotated at high speed on a circular track. (a) Rotation. (b) Rollover. (c) Reverse rotation
More
Book Chapter
Replicast Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005256
EISBN: 978-1-62708-187-0
... Abstract The Replicast process is developed to overcome the formation of lustrous carbon defects and carbon pickup observed in conventional evaporative pattern casting processes. This article provides a discussion on the pattern production, process capabilities, advantages, and limitations...
Abstract
The Replicast process is developed to overcome the formation of lustrous carbon defects and carbon pickup observed in conventional evaporative pattern casting processes. This article provides a discussion on the pattern production, process capabilities, advantages, and limitations of Replicast process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005308
EISBN: 978-1-62708-187-0
... processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances...
Abstract
This article discusses the types of patterns used for a specific application such as loose patterns, match plate patterns, cope and drag patterns, and special patterns. It describes the principles of the patternmaking techniques used to make expendable molds and for metal casting processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances for ensuring a dimensionally correct final pattern. A variety of materials and advanced composite materials used in the manufacture of patterns are discussed. The article evaluates the factors influencing the selection of type of patterns for specific castings.
Book Chapter
No-Bond Sand Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... Extremely fine sand is vacuum packed around pattern halves. Up to ∼70 kg (150 lb) None ∼3.2 0.125 Prototype or production quantities of 5000–10,000 $3000–14,000 Samples: 2–6 weeks Production: 2–6 weeks after approval Sand castings Treated sand is molded around a wood or metal pattern. The mold...
Abstract
This article describes the process and advantages of no-bond methods of vacuum molding and magnetic molding, with schematic illustrations. It also discusses the characteristics of plastic film and dimensional specifications of vacuum molding.
Book Chapter
Maintenance, Repair, Alterations, and Storage of Patterns and Tooling
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005219
EISBN: 978-1-62708-187-0
... and melt velocity with high cycling rate. Other tools and patterns require similar maintenance, probably to a lesser degree, depending on production volume requirements. This maintenance will require replacement or refurbishment of nearly worn-out components. This includes features that affect the casting...
Abstract
This article suggests procedures to increase the availability and function of patterns and tooling. It discusses the common expected failure mechanisms, such as erosion and fatigue, for dies and patterns. A successful maintenance program requires good record keeping for each tool. The article lists information required for the maintenance tooling record and preventive maintenance (PM) items from the North American Die Casting Association's publication E501. It concludes with information on objectives for proper storage of tools and patterns. The objectives are preventing tool degradation, safe workplace, easy location, proximity, and cataloging and tracking.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003418
EISBN: 978-1-62708-195-5
... Design Tube Rolling Tube rolling can be accomplished by hand or with rolling equipment. Rolling tables such as that shown in Fig. 5 are widely used to make tubular products such as golf shafts, fishing rods, and other tubes up to 9 m (30 ft) in length. The mandrel, with pattern tacked...
Abstract
This article describes processes and equipment that are used to produce composite tubular parts. The processes include sheeting, pattern cutting, tube rolling, shrink tape debulking, and finishing. The article provides a discussion on materials that are most suitable for tube rolling: preimpregnated materials and unidirectional tapes. The article also discusses wrapping techniques of cylindrical and tapered tubes, such as convolute and spiral wrapping.
Book Chapter
Introduction: Expendable Mold Processes with Expendable Patterns
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005253
EISBN: 978-1-62708-187-0
... of design in terms of size, shape, and product quality. Adding expendable patterns to this equation increases the complexity and tolerance of the cast product. Depending on the size and application, castings manufactured with the expendable mold process and with expendable patterns increase the tolerance...
Abstract
Depending on the size and application, castings manufactured with the expendable mold process and with expendable patterns increase the tolerance from 1.5 to 3.5 times that of the permanent pattern methods. This article reviews the two major expendable pattern methods, such as lost foam and investment casting. It discusses the Replicast casting process that involves patternmaking with polystyrene and a ceramic shell mold. The article contains a table that summarizes the differences in the steps of casting a part between the permanent pattern and expendable pattern methods.
Book Chapter
Metalcasting Technology and the Purchasing Process
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005188
EISBN: 978-1-62708-187-0
... point, when all other conditions have been satisfied, is to look at the current pattern of production at the metalcasting facility. Important factors can affect prices and quality of the cast part, such as whether or not the metalcasting facility is high volume, casts small components, is a jobbing shop...
Abstract
This article describes the four basic steps of the purchasing process of cast components. These steps include defining requirements and developing a purchasing plan; requesting and evaluating bids from potential sources; selecting a source and negotiating contract terms; and carrying out the contract and pursuing continuous improvement. It provides guidance on purchasing cast components and explains specific issues and approaches that have proven to be useful in purchasing castings. The article presents a list of the most significant considerations when attempting to determine the overall cost and design requirements of a metal casting.
Image
Steps in the production of a shell mold by the use of a louver-type dump bo...
Available to PurchasePublished: 01 December 2008
Fig. 10 Steps in the production of a shell mold by the use of a louver-type dump box. (a) Pattern raised into dump box. (b) Pattern clamped to dump box, and louver retracts to dump sand onto the pattern. (c) Pattern and dump box inverted, and excess sand falls. Louver returns. (d) Original
More
Book Chapter
Molding and Casting Processes
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006297
EISBN: 978-1-62708-179-5
... range.” Classification is primarily based on whether the molds and/or the patterns are permanent or nonpermanent. Fig. 1 Classification of molding and casting processes used in cast iron production Aggregate Molding Materials Aggregate molding, or sand casting, is the gravity pouring...
Abstract
Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding aggregates, clays, water, and additives in green sand, chemically bonded organic resins, and inorganic binders in self-setting, thermosetting, and gas-triggered systems. It discusses three main types of reclamation systems: wet, dry, and thermal. The article concludes with a description of both nonpermanent and permanent mold processes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... to vertical surfaces so that the pattern can be drawn from the mold without scraping the sides of the mold cavity. Fig. 1 Patterns for a sand casting and its gating and risering systems, for four different methods of mold production The choice of pattern material depends on the number of molds...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005254
EISBN: 978-1-62708-187-0
... is discharged and weighed to check density. The density of the foam pattern for a given cast product is critical. For consistent casting results, EPS density must be controlled within ±2% of target density. This is achieved by monitoring and adjusting time and temperature in the preexpander. Once...
Abstract
This article discusses the sequence of operations for producing a foam pattern for casting. It provides information on expandable polystyrene, the most preferred material for manufacturing lost foam patterns. The article then describes the major functions of pattern molding and assembly. The types and application methods of various lost foam coatings are explained. The article also describes the investment of the foam pattern in a sand system. It concludes with a discussion on the advantages of lost foam casting and information on the formation and control of folds.
Book Chapter
Slurry Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005249
EISBN: 978-1-62708-187-0
... at temperatures below 100 °C (212 °F) results in a slow conversion to the dihydrate. In the production of a plaster mold, plaster of Paris is mixed with water in excess of that required to form the dihydrate to make a slurry. This slurry is immediately poured over a pattern, standard or match plate...
Abstract
This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely reproduced detail. The article describes three generally recognized plaster mold processes, namely, conventional plaster mold casting, the Antioch process, and the foamed plaster process. Ceramic molding techniques are based on processes that employ permanent patterns and fine-grained zircon and calcined, high-alumina mullite slurries for molding. The Shaw process and the proprietary Unicast processes are also discussed.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006508
EISBN: 978-1-62708-207-5
... in the preexpander, the material is discharged and weighed to check density. The density of the foam pattern for a given cast product is critical. For consistent casting results, EPS density must be controlled within ±2% of target density. This is achieved by monitoring and adjusting time and temperature...
Abstract
Lost foam casting is a sand casting process in which the mold consists of an evaporative polystyrene foam pattern embedded in sand. It is especially well suited for making complex parts with convoluted features such as engine blocks, transmission cases, and cylinder heads. This article describes the lost foam casting process and its primary advantages, including the elimination of flash and parting lines, the relative ease of prototyping with foam, and the ability to incorporate multiple metals, whether in sections or layers, through sequential pours. It illustrates an entire process cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity.
Book
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.9781627082075
EISBN: 978-1-62708-207-5
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... sections, after production in a two-pattern molding machine, were broken apart at the location of the break strip on the pattern assembly. A core was put in place, and the sections were aligned by means of the locating plugs and glued together. The completed mold was placed flat on the sand in a pouring...
Abstract
Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods for preparation of resin-sand mixture for shell molding, namely, mixing resin and sand according to conventional dry mixing techniques, and coating the sand with resin. Shaping of shell molds and cores from resin sand mixtures is accomplished in machines. The article discusses the major steps in producing a mold or core and describes the problems most frequently encountered in shell-mold casting. The problems include mold cracking, soft molds, low hot tensile strength of molds, peelback, and mold shift. The article concludes with information on examples that provide some relative cost comparisons between shell molding and green sand molding.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
... combined with practical evaluation under such production-like conditions as injection behavior, handling characteristics, dimensional consistency, and dewaxability. Plastics Next to wax, plastic is the most widely used pattern material. A general-purpose grade of polystyrene is usually used...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Book Chapter
Tooling and Assembly Quality Control
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003433
EISBN: 978-1-62708-195-5
.... The thermomechanical properties of tooling materials have evolved such that they more closely match those of the production part to be fabricated. In addition to improvements in materials properties, today's tooling materials offer lower fabrication and materials costs. The advancements in CADCAM models have also...
Abstract
Tooling and assembly methodologies for advanced composites have steadily improved as a result of advancements in materials, through the use of computer-aided design/computer-aided manufacturing technology, and through application of sophisticated design for manufacturing and assembly concepts. This article reviews techniques and technologies that are used to control the quality of tooling and assembly methods for composite components.
1