1-20 of 486 Search Results for

passive films

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2005
Fig. 18 Sputter-depth profile results for passive film grown on Mg 65 Cu 25 Y 10 from x-ray photoelectron spectroscopy, assuming the metal peaks are from the metal beneath the surface oxide layer. Source: Ref 120 More
Image
Published: 01 January 2003
Fig. 5 Proposed models of the passive film. (a) General models include monolayers and multiple layers. Source: Ref 13. (b) Detailed proposed models for iron having single or double layers containing combinations of oxides, hydroxides, and oxyhydroxides. Source: Ref 14 More
Image
Published: 01 January 2003
Fig. 6 Logarithmic plots of the growth of passive film on iron by potentiostatic anodic polarization at different potentials in pH 8.4 borate-buffer solution (a) Direct. (b) Inverse. Source: Ref 70 More
Image
Published: 01 January 2003
Fig. 5 Copper-BTA passive film structure More
Image
Published: 01 January 2003
Fig. 9 Rates of passive film formation of austenitic stainless steel (SS-A) and high chromium cast iron (HCCI) balls in an oxygen atmosphere. Source: Ref 23 More
Book Chapter

By Jerome Kruger
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003585
EISBN: 978-1-62708-182-5
... diagram. The article presents a potential-pH diagram for the iron-water system and an illustration of an idealized anodic polarization curve for a metal surface, which serves as a basis for describing the kinetics of passivation. It discusses five properties of passive films: thickness, composition...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003583
EISBN: 978-1-62708-182-5
.... A corrosion process can be controlled by the electronic conductivity of passive films when the cathodic reaction occurs on the surface of the film and by activation control of corrosion. Passivation becomes thermodynamically possible when the corrosion potential exceeds the potential corresponding...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003612
EISBN: 978-1-62708-182-5
..., the article provides a detailed discussion on the various stages of pitting. These include passive film breakdown, metastable pitting, pit growth, and pit stifling or death. pitting corrosion passive metals metal composition surface condition alloy composition corrosion inhibitors pitting passive...
Image
Published: 15 January 2021
at higher velocities, at which the rate of damage to the passive film is larger than that of repassivation. (b) Passive film on yttrium-containing 304 stainless steel exhibits a larger resistance to the scratch load, evident by its larger critical load (approximately 8 g) at which the electrical contact More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
... Abstract This article provides a background of the complex relationship between titanium and its alloys with aqueous environments, which is dictated by the presence of a passivating oxide film. It describes the corrosion vulnerability of titanium and titanium oxides by the classification...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003672
EISBN: 978-1-62708-182-5
... where the hydrogen evolution reaction occurs. This, in turn, can lead to one of the forms of corrosion called hydrogen-induced cracking. The lower-potential metal in a galvanic couple does not always have its corrosion rate accelerated. For metals that form a passive film, coupling with another...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
... are used, this article focuses only on the corrosion behavior of these three groups. These alloys all form a thin, compact, semiconducting oxide (or hydroxide) film (usually called a passive film) that protects the substrate alloy from corrosive environments as well as interacts with the host during...
Image
Published: 31 December 2017
Fig. 2 (a) Severe corrosion with enhanced mechanical wear, and (b) moderate corrosion of bottom surface covered with passivating film by creating debris through film pulverization by sliding top surface More
Image
Published: 15 January 2021
Fig. 3 Potential ranges of environmentally assisted cracking by (I) hydrogen embrittlement, (II) cracking of unstable passive film, and (III) cracking initiated at pits near the pitting potential. Vertical dashed lines define potential range over which nonpassivating films may crack under More
Image
Published: 01 January 2002
Fig. 3 Potential ranges of environmentally assisted cracking by (I) hydrogen embrittlement, (II) cracking of unstable passive film, and (III) cracking initiated at pits near the pitting potential. Vertical dashed lines define potential range over which nonpassivating films may crack under More
Image
Published: 01 January 2000
Fig. 33 Four indentations into grade II titanium in 0.01 N sulfuric acid during electrochemical polarization. The first indentation was made in the passive regime, at 0.63 V above open circuit (OC) by stepping to that potential from open circuit. The second was after removing the passive More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... point of view. This phenomenon—discussed in the article “Passivity” in this Section—is also an area in which huge progress has been made in recent years. The mechanisms of oxide film growth, the chemical composition and the chemical states, the crystallographic structure, and the semiconductor...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003117
EISBN: 978-1-62708-199-3
...-temperature oxidation, stainless steels use a generally similar model for corrosion protection. However, at low temperatures, stainless steels do not form a layer of true oxide. Instead, a passive film is formed. One mechanism that has been suggested is the formation of a film of hydrated oxide...
Image
Published: 01 January 2006
Fig. 15 Schematic of crevice-corrosion condition where stagnant liquid with a limited supply of oxygen leads to breakdown of the stainless alloy passive film More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003616
EISBN: 978-1-62708-182-5
... THE CORROSION BEHAVIOR of a metal or alloy is determined by its composition and structural features, the environment and stresses to which it is exposed, and the behavior of any corrosion products generated (e.g., formation of passive films or hydrolysis to produce acidity). This article provides an overview...