1-20 of 452 Search Results for

passive films

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Jerome Kruger
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003585
EISBN: 978-1-62708-182-5
... and the Pourbaix diagram. The article presents a potential-pH diagram for the iron-water system and an illustration of an idealized anodic polarization curve for a metal surface, which serves as a basis for describing the kinetics of passivation. It discusses five properties of passive films: thickness...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003583
EISBN: 978-1-62708-182-5
.... A corrosion process can be controlled by the electronic conductivity of passive films when the cathodic reaction occurs on the surface of the film and by activation control of corrosion. Passivation becomes thermodynamically possible when the corrosion potential exceeds the potential corresponding...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003612
EISBN: 978-1-62708-182-5
.... In addition, the article provides a detailed discussion on the various stages of pitting. These include passive film breakdown, metastable pitting, pit growth, and pit stifling or death. pitting corrosion passive metals metal composition surface condition alloy composition corrosion inhibitors...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
...Abstract Abstract This article provides a background of the complex relationship between titanium and its alloys with aqueous environments, which is dictated by the presence of a passivating oxide film. It describes the corrosion vulnerability of titanium and titanium oxides...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003637
EISBN: 978-1-62708-182-5
...: metallurgical, microbiological, chemical, and electrochemical. It provides information on the microbiologically influenced corrosion (MIC) of irons and steels, passive alloys (austenitic stainless steels), aluminum alloys, copper alloys, and composites. The article reviews the formation of microbial biofilms...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
... are used, this article focuses only on the corrosion behavior of these three groups. These alloys all form a thin, compact, semiconducting oxide (or hydroxide) film (usually called a passive film) that protects the substrate alloy from corrosive environments as well as interacts with the host during...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003672
EISBN: 978-1-62708-182-5
... where the hydrogen evolution reaction occurs. This, in turn, can lead to one of the forms of corrosion called hydrogen-induced cracking. The lower-potential metal in a galvanic couple does not always have its corrosion rate accelerated. For metals that form a passive film, coupling with another...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003117
EISBN: 978-1-62708-199-3
.... In high-temperature oxidation, stainless steels use a generally similar model for corrosion protection. However, at low temperatures, stainless steels do not form a layer of true oxide. Instead, a passive film is formed. One mechanism that has been suggested is the formation of a film of hydrated oxide...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... corrosion in some or all ways including: Damage to protective metal oxide films. Many corrosion-resistant metallic materials have a thin oxide film (i.e., a passive film formed on the surface) that blocks or minimizes the interaction between the surface and surrounding medium, thus suppressing...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003616
EISBN: 978-1-62708-182-5
... corrosion THE CORROSION BEHAVIOR of a metal or alloy is determined by its composition and structural features, the environment and stresses to which it is exposed, and the behavior of any corrosion products generated (e.g., formation of passive films or hydrolysis to produce acidity). This article...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003577
EISBN: 978-1-62708-182-5
... point of view. This phenomenon—discussed in the article “Passivity” in this Section—is also an area in which huge progress has been made in recent years. The mechanisms of oxide film growth, the chemical composition and the chemical states, the crystallographic structure, and the semiconductor...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003629
EISBN: 978-1-62708-182-5
... combination, and the results are correlated to their flotation behaviors ( Ref 21 ). Case History on Material Selection for Grinding Balls To minimize corrosion loss and the adverse effect on flotation, it is necessary to search for materials that form passive films rapidly on grinding ball surfaces...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
...% Cr, which enables the formation of a thin, tenacious, and protective chromium oxide film (passive film) in place of a less protective iron oxide film. This passive film gives them corrosion protection. Stainless steels are used in a variety of applications ranging from consumer goods to structural...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
...Abstract Abstract Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... metallurgy and the surface oxide films, including the protective passive film, can be accomplished by the use of various surface sensitive analytical techniques. These techniques include energy dispersive x-ray spectroscopy (EDS), wavelength dispersive x-ray spectroscopy (WDS), Auger electron spectroscopy...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... the potential reaches a critical value, called the breakdown potential (or the critical potential for pitting) ( E b ). The passive film locally breaks down, active dissolution occurs, and the electrochemical and chemical reactions combined with insufficient mass transport to and from the occluded site cause...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
...) In general, SCC is observed in alloy-environment combinations that result in the formation of a film on the metal surface. These films may be passivating layers, tarnish films, or dealloyed layers. In many cases, these films reduce the rate of general or uniform corrosion, making the alloy desirable...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
... spontaneously, producing a thin and stable passive film with thickness of 1–10 nanometers, which prevents further oxidation. When polarized as an anode, electrons from the aluminum easily transfer across the natural oxide, and no ionic tunneling occurs from the outside. Therefore, the aluminum oxide constitutes...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003587
EISBN: 978-1-62708-182-5
... to 400 °C, or 390 to 750 °F). Steels of varying types are generally chosen to contain these systems, because, in general, the basicity of the melt prevents iron corrosion. Protection by passive films is less reliable, because oxide ion discharge may break down the passive film. Electropolished iron...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
...-nanocrystalline Al-Ni-Y alloy in an acidic environment that destabilized protective passive oxide films ( Ref 47 ). Such behavior was not observed in the as-quenched version of the same amorphous alloy, which resisted depassivation and porosity development in the same solution. However, global electrochemical...