Skip Nav Destination
Close Modal
Search Results for
passivation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 200 Search Results for
passivation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article describes the process features of the implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table lists common medical device applications for stainless steels. The article discusses the physical metallurgy, and physical and mechanical properties of the stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article describes the process features of the implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... Abstract Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings. Decorative chromium deposits are...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... Abstract Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003796
EISBN: 978-1-62708-183-2
... Abstract This article contains a galvanic series chart that shows the electrochemical voltage ranges of metals and alloys in flowing seawater. Dark boxes in the chart indicate the active behavior of active-passive alloys. galvanic series chart electrochemical voltage Fig. 1...
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003815
EISBN: 978-1-62708-183-2
... Abstract This article focuses on the various forms of corrosion occurred in the passive range of aluminum and its alloys, namely, pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion...
Abstract
This article focuses on the various forms of corrosion occurred in the passive range of aluminum and its alloys, namely, pitting corrosion, galvanic corrosion, deposition corrosion, intergranular corrosion, stress-corrosion cracking, exfoliation corrosion, corrosion fatigue, erosion-corrosion, atmospheric corrosion, filiform corrosion, and corrosion in water and soils. It discusses the effects of composition, microstructure, stress-intensity factor, and nonmetallic building materials on the corrosion behavior of aluminum and its alloys. The article also describes the corrosion resistance of anodized aluminum in contact with foods, pharmaceuticals, and chemicals.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... grand challenge that could possibly be accomplished via the formation of a homogeneous single-phase system with alloying elements that either promote passivity in neutral and acidic environments or increase resistance to local halide-induced corrosion. Amorphous alloys offer this possibility. The...
Abstract
This article illustrates the three techniques for producing glassy metals, namely, liquid phase quenching, atomic or molecular deposition, and external action technique. Devitrification of an amorphous alloy can proceed by several routes, including primary crystallization, eutectoid crystallization, and polymorphous crystallization. The article demonstrates a free-energy versus composition diagram that summarizes many of the devitrification routes. It provides a historical review of the corrosion behavior of fully amorphous and partially devitrified metallic glasses. The article describes the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including hydrogen embrittlement and stress-corrosion cracking.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
... metallic implant materials, with the exception of noble metals, is that they are strongly passivating metals and alloys with a very low uniform dissolution rate in the real or simulated human body environments. This has important consequences for the selection and interpretation of the corrosion test...
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003117
EISBN: 978-1-62708-199-3
...-temperature oxidation, stainless steels use a generally similar model for corrosion protection. However, at low temperatures, stainless steels do not form a layer of true oxide. Instead, a passive film is formed. One mechanism that has been suggested is the formation of a film of hydrated oxide, but there is...
Abstract
Selection of appropriate grades of steel will enable the steel to perform for very long times with minimal corrosion, but an inadequate grade can corrode and perforate more rapidly than a plain carbon steel will fail by uniform corrosion. This article describes the effect of chemical composition, heat treatment, welding, and surface condition on corrosion resistance of stainless steels. It discusses the various forms of corrosion and the important factors to be considered when selecting suitable stainless steel for application in specific corrosive environments.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
...: Damage to protective metal oxide films. Many corrosion-resistant metallic materials have a thin oxide film (i.e., a passive film formed on the surface) that blocks or minimizes the interaction between the surface and surrounding medium, thus suppressing corrosion reactions. When the materials are...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003835
EISBN: 978-1-62708-183-2
... applications. The corrosion resistance of stainless steels (SS) and nickel-base superalloys can be attributed to the natural, protective oxide layer (passive film) that forms on the surfaces of these metals. This protective oxide film is subject to localized breakdown, allowing pitting, crevice corrosion...
Abstract
This article provides a detailed discussion on the most commonly employed tests and specific examples of the use of these tests in evaluating the corrosion resistance of powder metallurgy (P/M) stainless steels. It describes the influence of various processing parameters on the corrosion resistance of P/M stainless steels. The approaches used to improve the corrosion resistance of sintered stainless steels are discussed briefly. The article also presents a discussion on the manufacturing and corrosion characteristics of P/M superalloys.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006540
EISBN: 978-1-62708-183-2
... E p pitting potential; passivation potential E pass passivation potential E pit critical potential for pitting E pp primary passivation potential E prot protection or repassivation potential E R , E RP repassivation...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
..., making them more susceptible to producing greater amounts of metallic debris. The high corrosion resistance of metals and alloys used as implants is due to the presence of a passive oxide layer covering their surface. However, this self-protective feature is constantly under attack, because it is in...
Abstract
This article highlights corrosion resistance and ion release from main transition metallic bearings that are used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003812
EISBN: 978-1-62708-183-2
..., its coherence and adhesion to the metal, and the diffusivities of oxygen and metal in the oxide. In high-temperature oxidation, stainless steels use a generally similar model for corrosion protection. However, at low temperatures, stainless steels do not form a layer of true oxide. Instead, a passive...
Abstract
This article provides an overview of the identification systems for various grades of wrought stainless steels, namely, the American Iron and Steel Institute numbering system, the Unified Numbering System, and proprietary designations. It elaborates on five major families of stainless steels, as defined by the crystallographic structure. These include ferritic stainless steels, austenitic stainless steels, martensitic stainless steels, and precipitation-hardening stainless steels. The mechanism of corrosion protection for stainless steels is reviewed. The article examines the effects of composition, processing, design, fabrication, and external treatments on the corrosion of stainless steels. Various forms of corrosion, namely, general, galvanic, pitting, crevice, intergranular, stress-corrosion cracking, erosion-corrosion, and oxidation, are reviewed. Corrosion testing for; corrosion in atmosphere, water, and chemical environments; and the applications of stainless steels in various industries are also discussed.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... compatibility by forming continuous passive films that prevent or significantly limit the corrosion rates encountered in the physiological environment. One mechanism of biocompatibility failure is the occurrence of conditions that damage the passive film or prevent its formation. Changes in environmental...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response to severe corrosion of implant and particulate materials. It provides a description of metal binding and its effects on metabolic processes. The hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... Nitinol rids the surface layer of the nickel and exposes only TiO 2 to the surrounding environment, a process known as passivation. On an atomistic basis, passivated Nitinol looks and reacts just like titanium. Compositional depth profiling of the surface of a passivated Nitinol sample obtained using...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article describes the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... revert back to its oxide, but it generally has good resistance to aqueous corrosion in near-neutral solutions, due to the formation of a passive film ( Ref 57 ). In acidic and basic solutions, the passive film is not thermodynamically stable, and thus, corrosion rates are high ( Ref 57 ). Aluminum pits...
Abstract
This article begins with the discussion on the background of metal-matrix composites (MMC) and moves into a broad description of the general parameters affecting the corrosion of MMC. It discusses the primary sources of MMC corrosion that include galvanic corrosion between MMC constituents, chemical degradation of interphases and reinforcements, microstructure-influenced corrosion, and processing-induced corrosion. The article elaborates on the corrosion behavior of specific aluminum, magnesium, titanium, copper, stainless steel, lead, depleted uranium, and zinc MMCs systems. It concludes with a description on the corrosion control of MMCs using protective coatings and inhibitors.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003823
EISBN: 978-1-62708-183-2
... particularly suitable for handling reducing acids, which is difficult for most passive alloys. Protective oxide films are difficult to form on the surface of zirconium in a few media, such as hydrofluoric acid, concentrated sulfuric acid, and certain dry organic halides. Consequently, zirconium is not...
Abstract
This article provides a description of the classification, industrial applications, microstructures, physical, chemical, corrosion, and mechanical properties of zirconium and its alloys. It discusses the formation of oxide films and the effects of water, temperature, and pH on zirconium. The delayed hydride cracking of zirconium is also described. The article provides information on the resistance of zirconium to various types of corrosion, including pitting corrosion, crevice corrosion, intergranular corrosion, galvanic corrosion, microbiologically induced corrosion, erosion-corrosion, and fretting corrosion. The article explains the effects of tin content in zirconium and effects of fabrication on corrosion. Corrosion control measures for all types of corrosion are also highlighted. The article concludes with information on the safety precautions associated with handling of zirconium.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
... this passive oxide film can be expected in most aqueous solutions. Because the passivity of titanium stems from the formation of a stable oxide film, an understanding of the corrosion behavior of titanium is obtained by recognizing the conditions under which this oxide is thermodynamically stable. The...
Abstract
Titanium alloys are often used in highly corrosive environments because they are better suited than most other materials. The excellent corrosion resistance is the result of naturally occurring surface oxide films that are stable, uniform, and adherent. This article offers explanations and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for expanding the useful application range for titanium and includes a comprehensive overview of available corrosion data.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003818
EISBN: 978-1-62708-183-2
... usually reflowed by momentarily melting the tin coating in a resistance or induction heating unit. In doing so, a thin layer of tin-iron intermetallic compound is formed at the tin/steel interface. Next, an extremely thin passivation film based on chromium oxide is created by immersion or spraying of...
Abstract
This article describes the allotropic modification and atmospheric corrosion of pure tin. Corrosion of pure tin due to oxidation reaction, and reaction with the other gases, water, acids, bases, and other liquid media, is discussed. The article provides information on corrosion behavior on soft solders, pewter, bearing alloys, tin-copper alloys, and tin-silver alloys. It reviews the influence of corrosion on immersion tin coating, tin-cadmium alloy coatings, tin-cobalt coatings, tin-copper coatings, tin-lead coatings, tin-nickel coatings, and tin-zinc coatings. The general properties and corrosion resistance of tinplate are summarized. The article also describes the methods of corrosion testing of coatings; these include an analysis of coating thickness measurements, porosity and rust resistance testing, solderability test, and specific special tests.