Skip Nav Destination
Close Modal
Search Results for
particle-induced X-ray emission spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 140 Search Results for
particle-induced X-ray emission spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001734
EISBN: 978-1-62708-178-8
... the applications of PIXE in three areas, namely, atmospheric physics and chemistry, external proton milliprobes and historical analysis, and PIXE microprobes. calibration data reduction particle-induced X-ray emission spectroscopy quality assurance X-ray fluorescence spectroscopy Overview...
Abstract
Particle-induced x-ray emission (PIXE) is one of several quantitative analyses based on characteristic x-rays. This article provides a detailed account on the principles of PIXE, discussing the data-reduction codes used to identify, integrate, and reduce x-ray peaks into elemental concentrations. It provides information on the calibration of PIXE analysis, which is mostly performed using gravimetric standards to avoid serious absorption, refluorescence, or ion energy change corrections. A comparative study on PIXE and x-ray fluorescence is also included. Finally, the article discusses the applications of PIXE in three areas, namely, atmospheric physics and chemistry, external proton milliprobes and historical analysis, and PIXE microprobes.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006666
EISBN: 978-1-62708-213-6
... in the atmosphere are important because they are part of the aerosol mass, and all results must be quantitative. These severe, simultaneous but important requirements demand the specialized capabilities of PIXE. Particle-induced x-ray emission spectroscopy “sees” more elements in a single analysis than any other...
Abstract
This article provides a detailed account of particle-induced x-ray emission (PIXE), covering the basic principles of PIXE analysis and calibration and quality-assurance protocols employed. A comparative study on PIXE and x-ray fluorescence is then presented. The article also discusses the applications of PIXE in atmospheric physics and chemistry, external proton milliprobes and historical analysis, and PIXE microprobes.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... spectroscopy PGAA prompt gamma-ray activation analysis PIXE particle-induced x-ray emission RBS Rutherford backscattering spectrometry RDF radial distribution function (analysis) RHEED reflection high-energy electron diffraction SAD selected-area diffraction...
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005731
EISBN: 978-1-62708-171-9
... materials. This article discusses various characterization methods for powders. Topics discussed include: methods for determining particle size and/or size distribution; powder and coating stoichiometry; particle chemistry; and phase analysis by x-ray diffraction. This article discusses the characterization...
Abstract
The raw materials used in thermal spray processes are a critical parameter in the finished coating because the variations in their size, morphology, chemistry, and phase composition can significantly impact coating properties. Therefore, it is important to test and characterize the raw materials. This article discusses various characterization methods for powders. Topics discussed include: methods for determining particle size and/or size distribution; powder and coating stoichiometry; particle chemistry; and phase analysis by x-ray diffraction. This article discusses the characterization of thermal spray powders which involves the determination of particle size and/or size distribution and phase analysis by x-ray diffraction. It provides information on preferential volatilization and rapid solidification that influence compositional differences. Wet chemical methods, spectographic analysis, and atomic absorption spectrometry are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... effect. See Stark effect. the local crystallographic phase and orienta- given period. electrode. In emission spectroscopy, either of tion. See also Kikuchi lines and Kikuchi dot map. See x-ray map. pattern. doublets. Double peaks in an x-ray photoelec- two terminals between which an electrical tron...
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... shows an enlarged image of photographic plates. emulsion. the tip, and individual atoms are made visible. See also atom probe. emission spectroscopy. The branch of spec- extended x-ray absorption fine structure troscopy treating the theory, interpreta- (EXAFS). The weak oscillatory structure field...
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
..., such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed. atomic absorption spectroscopy atomic fluorescence spectrometry Auger electron spectroscopy bulk analysis electron...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... energy of ≈12 keV or higher is needed to induce copper K α emission. Handheld X-Ray Fluorescence Analysis By their very nature, handheld XRF units are designed to be used on samples in the field that require little or no sample preparation. However, for best results, it is desirable to satisfy...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006642
EISBN: 978-1-62708-213-6
... is used to count the number of tagged atoms by observing and recording the individual radiation emissions. Neutron activation analysis is a powerful assay technique primarily because neutrons, unlike charged particles ( e − ) or photons (x-rays), can penetrate deeply into most bulk materials...
Abstract
This article provides a detailed account of the concepts and applications of neutron activation analysis (NAA), covering the basic principles and neutron reactions of NAA as well as calibration methods used for NAA. The discussion also covers the factors pertinent to analytical sensitivity achievable with NAA, common neutron sources, sample-handling technique, and automated systems of NAA. The categories of NAA covered are instrumental neutron activation analysis, epithermal neutron activation analysis, radiochemical neutron activation analysis, 14 MeV fast neutron activation analysis, delayed neutron activation analysis, and prompt gamma activation analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001733
EISBN: 978-1-62708-178-8
.... electromagnetic radiation energy-dispersive X-ray spectrometers qualitative analysis quantitative analysis sample preparation X-ray absorption spectroscopy X-ray emission spectroscopy Overview Introduction X-ray spectrometry, or x-ray fluorescence, is an emission spectroscopic technique that has...
Abstract
This article provides an introduction to x-ray spectrometry, and discusses the role of electromagnetic radiation, x-ray emission, and x-ray absorption. It focuses on the instrumentation of wavelength-dispersive x-ray spectrometers, and energy dispersive x-ray spectrometers (EDS) that comprise x-ray tubes, the analyzing system, and detectors. The fundamentals of EDS operation are described. The article also provides useful information on preparation of various samples, explaining the qualitative and quantitative analyses of EDS. It reviews the applications of the x-ray spectrometry.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006645
EISBN: 978-1-62708-213-6
.... However, the x-ray flux from isotopic sources that can be safety handled in a laboratory is too weak for practical use. Because gamma-ray sources usually emit only a few narrow x-ray lines, several are required to excite many elements efficiently. Another method is particle-induced x-ray emission applied...
Abstract
This article provides a detailed account of X-ray spectroscopy used for elemental identification and determination. It begins with an overview of the operating principles of X-ray fluorescence (XRF) spectrometer, as well as a comparison of the operating principles of wavelength-dispersive spectrometer (WDS) and energy-dispersive spectrometer (EDS). This is followed by a discussion on the mechanism and effects of X-ray radiation, X-ray emission, and X-ray absorption. The article then discusses components used, operation, and applications of WDS and EDS. Some of the factors and processes involved in sample preparation for XRF analysis are also included. The article further provides information on the practical procedure for and the applications of WDS and EDS qualitative and quantitative analyses.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... materials is seldom performed. A competing process to Auger electron generation is that of x-ray emission, the analytical signal for the technique known as energy-dispersive x-ray spectroscopy (EDS). In general, x-ray emission is more pronounced for heavier elements, while the probability of Auger...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
... Desorbed atoms, molecules Imaging … Identification of adsorbed and stored materials TXRF Total-reflection x-ray fluorescence spectroscopy X-ray Fluorescent x-ray Composition distribution 10 9 atoms/cm 2 ; depth direction several nanometers Surface contaminants UPS Ultraviolet photoelectron...
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
... Laser-induced breakdown spectroscopy (LIBS) is a technique based on the optical emission from a laser-induced plasma (laser spark), generated in the very intense electromagnetic field of a laser pulse. As such, it cannot be described as a certain type of emission source in the same way as the other...
Abstract
This article is a detailed account of optical emission spectroscopy (OES) for elemental analysis. It begins with a discussion on the historical background of OES and development trends in OES methods. This is followed by a description of the general principles and optical systems of OES, along with various types of emission sources commonly used for OES. Some of the processes involved in calibration and quantification of OES for direct solids analysis by the ratio method are then described. The article ends with a discussion on the applications of each type of emission sources.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
.... The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy. emission spectroscopy molecular fluorescence spectroscopy qualitative analysis quantitative analysis uranium Overview Introduction Molecular fluorescence spectroscopy has...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001770
EISBN: 978-1-62708-178-8
... elemental images. In XPS, bombardment of the sample surface with x-rays results in photoelectron and Auger electron emission. Thus, an XPS spectrum contains both sets of peaks representing sample surface and provides much information (see the article “X-Ray Photoelectron Spectroscopy” in this Volume...
Abstract
This article describes the principles and applications of Auger electron spectroscopy (AES). It provides information on the instrumentation typically used in the AES, including an electron gun, an electron spectrometer, a secondary electron detector, and an ion gun. The article also describes experimental methods and limitations of the AES, including elemental detection sensitivity, electron beam artifacts, sample charging, spectral peak overlap, high vapor pressure samples, and sputtering artifacts.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... width W watt W load; weight of body; abrasive wear resistance; wear volume WDS wavelength-dispersive spectrometer WPC wear particle concentration WRP work removal parameter wt% weight percent XPS x-ray photoelectron spectroscopy XRD x-ray...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
... electron. Excited atoms are unstable, and de-excitation occurs immediately, resulting in the emission of an x-ray or a low-energy electron termed an Auger electron ( Fig. 1 ). Figure 1(a) illustrates the process of an atom in the initial state excited by an electron or other incident particle, resulting...
Abstract
This article discusses the basic principles of and chemical effects in Auger electron spectroscopy (AES), covering various factors affecting the quantitative analyses of AES. The discussion covers instrumentation and sophisticated electronics typically used in AES for data acquisition and manipulation and various limitations of AES. Various examples highlighting the capabilities of the technique are also included.
1