Skip Nav Destination
Close Modal
By
K.S. Ravichandran
By
Craig Brown
By
Bence Bartha
By
Craig J. Schroeder, John M. Tartaglia
By
Richard D. Zipp, E. Philip Dahlberg
By
Jeffrey A. Jansen
Search Results for
part-through cracks
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1903
Search Results for part-through cracks
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Image
Effect of overaging on part through crack growth of aluminum alloy 7475 sub...
Available to PurchasePublished: 01 January 1996
Fig. 71 Effect of overaging on part through crack growth of aluminum alloy 7475 subject to 500 h block flight-by-flight fighter spectrum loading in sump tank water. Source: Ref 127
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002421
EISBN: 978-1-62708-193-1
.... Farfield tensile loading and part-through crack in a finite plate are also discussed. The article concludes with a discussion on through-the-thickness crack and part-through crack in a pressurized cylinder. center crack corner cracks crack geometry edge cracks farfield tensile loading part...
Abstract
The stress-intensity concept is based on the parameter that quantifies the stresses at a crack tip. This article summarizes some stress-intensity factors for various crack geometries commonly found in structural components. Through-the-thickness cracks may be located in the middle of a plate; at the edge of a plate; or at the edge of a hole inside a plate. The article discusses uniform farfield loading in terms of point loading of a center crack and point loading of an edge crack. It tabulates the correction factors for stress intensity at shallow surface cracks under tension. Farfield tensile loading and part-through crack in a finite plate are also discussed. The article concludes with a discussion on through-the-thickness crack and part-through crack in a pressurized cylinder.
Image
Procedure and designations for failure moment of pipes with circumferential...
Available to PurchasePublished: 01 January 2000
Fig. 3 Procedure and designations for failure moment of pipes with circumferential cracks according to the plastic limit load concept, p i , internal pressure; NA, neutral axis Circumferential part-through crack Circumferential through-wall crack Criterion Flow stress Flow
More
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... Abstract Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
..., in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002386
EISBN: 978-1-62708-193-1
..., section thickness determines constraint conditions for plane strain and plane stress toughness ( Eq 2 and 3 ) of a through-thickness crack. However, for part-through cracks (surface flaws and corner cracks), the length of the zone does not depend on the thickness. In the case of part-through cracks...
Abstract
This article describes the basis of operating stress maps based on failure assessment diagrams, which are used to assess potential fracture in the whole range of conditions from brittle to fully plastic behavior. It discusses the factors influencing the process of constructing an operating stress map based on the principles used in constructing a residual strength diagram. These include plane strain fracture toughness, net section yield, and empiricism. The article details the fatigue crack growth behavior based on stress-corrosion cracking rates and corrosion fatigue factor. It summarizes the linear elastic fracture mechanics (LEFM) concepts for explaining the application of LEFM in damage tolerance analysis. The article exemplifies operating stress maps in a variety of applications.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005342
EISBN: 978-1-62708-187-0
... The primary objective of the visual inspection is to determine the location of the fracture origin and evaluate how the crack propagated through the alloy. Knowing where it started and where it ended provides information about how the part was loaded. The origin region should be examined to determine where...
Abstract
This article discusses the visual and microscopic characteristics of fractures of cast alloys. These fractures include ductile rupture, transgranular brittle fracture, intergranular fracture, fatigue, and environmentally induced fracture. The article also describes the factors that affect fracture appearance.
Book Chapter
Effect of Crack Shape on Fatigue Crack Growth
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002359
EISBN: 978-1-62708-193-1
... Extension Force for a Part-through Crack in a Plate , J. Appl. Mech., Trans. ASME , Vol 29 ( No. 4 ), 1962 , p 651 – 654 10.1115/1.3640649 3. Newman J.C. Jr. and Raju I.S. , Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies , Fracture Mechanics...
Abstract
This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual stresses, texture, loading mode, environment, and crack coalescence. Measurement of crack shapes or aspect ratios during fatigue crack growth can be performed by a number of techniques. The article describes the estimation of the stress-intensity factor for arbitrarily-shaped cracks and failure prediction methods for arbitrarily-shaped flaws.
Book Chapter
Casting Failure Analysis Techniques and Case Studies
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005343
EISBN: 978-1-62708-187-0
... of the fracture origin, the direction of crack propagation, and identification of the final fracture region Presence of nonmetallic inclusions, shrinkage, or gas porosity or any other anomalies at or near the fracture origin Damage and wear to the surface of the part, both near to and away from the failure...
Abstract
This article reviews the failure analysis process with specific reference to the considerations that should be addressed when a casting has failed. It describes the failure analysis methodology for three failed cast components: an aluminum bracket, a bronze suction roll, and a steel automotive spindle. The article discusses failure analysis investigation by obtaining casting background information, planning the evaluation and selecting the appropriate casting for analysis, conducting a preliminary examination, conducting the proper material evaluations, and thoroughly evaluating the test data. It concludes with information on case studies that show how the methodology is adapted for differing materials, failure mechanisms, and failure circumstances.
Book Chapter
Magnetic-Particle Inspection
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003232
EISBN: 978-1-62708-199-3
... to part use and function have not developed during processing. Advantages The magnetic-particle method is a sensitive means to locate small, shallow surface cracks in ferromagnetic materials. Cracks large enough to be seen by the naked eye can produce an indication, but very wide cracks...
Abstract
Magnetic-particle inspection is a nondestructive testing technique used to locate surface and subsurface discontinuities in ferromagnetic materials. Beginning with an overview of the applications, advantages, and limitations of magnetic-particle inspection, this article provides a detailed account of the portable power sources available for magnetization, and the different ways of generating magnetic fields using yokes, coils, central conductors, prod contacts, direct-contact, and induced current. In addition, the article discusses the characteristics and classification, and properties of magnetic particles and suspended liquids. Finally, the article outlines the types of discontinuities (surface and subsurface) that can be identified by magnetic-particle inspection and the importance of demagnetization after inspection.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006468
EISBN: 978-1-62708-190-0
... industries (truck, railroad, and aircraft) have planned overhaul schedules at which critical parts are magnetic-particle inspected for cracks. Planned inspection programs are also used in keeping plant equipment in operation without breakdowns during service. Because of sudden and severe stress applications...
Abstract
Magnetic-particle inspection is a method of locating surface and subsurface discontinuities in ferromagnetic materials. This article discusses the applications and advantages and limitations of magnetic-particle inspection. It describes magnetic fields in terms of magnetized ring, magnetized bar, circular magnetization, longitudinal magnetization, and effects of flux direction. General applications, advantages, and limitations of the various magnetizing methods used in magnetic-particle inspection are listed in a table. The article discusses the items that must be considered in establishing a set of procedures for the magnetic-particle inspection of a specific part: type of current, type of magnetic particles, method of magnetization, direction of magnetization, magnitude of applied current, and equipment. It concludes with a discussion on demagnetization after magnetic-particle inspection.
Book Chapter
Nondestructive Evaluation Applications for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
... in a part that is not detectable if it smaller in size than what an NDE inspector is able to find based on POD studies and equipment calibration. This may result in finding small indications through destructive methods that were not detectable through NDE. All possible crack orientations need...
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Book Chapter
Use of Fractography for Failure Analysis
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003227
EISBN: 978-1-62708-199-3
... and magnitude of Material of the Part. Many questions concern- of welding cracks is provided by metallographic applied stress from fractographic inspection. Ob- examination of transverse sections through the viously, if the type of stress that caused fracture ing the relation of the material of a part to frac...
Abstract
This article describes various evaluation techniques of fractography such as visual inspection, macroscopic and microscopic examinations that are used to resolve different aspects of failure. It gives a brief description and pictorial representation of various defects leading to fracture of metals, including laps, seams, cold shuts, cracks, inclusions, porosity, fatigue, and stress corrosion cracking.
Image
Examples of defects in extrusion. (a) Chevron cracking in round steel bars ...
Available to PurchasePublished: 31 December 2017
Fig. 9 Examples of defects in extrusion. (a) Chevron cracking in round steel bars during extrusion. Unless the part is inspected, such internal detects may remain undetected and possibly cause failure of the part in service. (b) Deformation zone in extrusion, showing rigid and plastic zones
More
Image
Microstructures of crankcase 2. (a) Section through the thick-wall part. (b...
Available to PurchasePublished: 01 January 2002
Fig. 38 Microstructures of crankcase 2. (a) Section through the thick-wall part. (b) Section through the thin-wall part with crack. Both etched with picral. 100×
More
Book Chapter
The Role of Fractography in Metallurgical Failure Analysis
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007038
EISBN: 978-1-62708-387-4
... Load exceeded the dynamic strength of the part. Check for proper alloy and processing as well as proper toughness and grain size. Loading direction may show failure was secondary or impact-induced. Low temperatures Progressive cracking or damage Fatigue Cyclic stress exceeded...
Abstract
Many metal failures involve fracture, and fractography is an essential activity in many, if not most, failure analysis (FA) investigations. This article introduces and illustrates the role of fractography in an FA investigation. Basic guidelines are briefly presented for investigating a failure and how fractography helps the FA investigator determine evidence. Examples are given throughout this article on how the examination of fracture surfaces discerns various sources of crack initiation and mechanisms of crack growth. The procedures for analyzing fractures also include several steps and techniques that involve photographic documentation, proper specimen handling, and visual or microscopic examination. The article also briefly describes the use of metallography in fracture analysis along with case studies as illustrative examples of various fracture mechanisms and modes.
Image
Microstructures of crankcase 2. (a) Section through the thick-wall part. (b...
Available to PurchasePublished: 30 August 2021
Fig. 18 Microstructures of crankcase 2. (a) Section through the thick-wall part. (b) Section through the thin-wall part with crack. Both etched with picral. Original magnification of both: 100×
More
Book Chapter
Preparation and Preservation of Fracture Specimens
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001832
EISBN: 978-1-62708-181-8
... secondary cracks that have propagated only partially through a cracked member. These part-through cracks can be opened in the laboratory and are often in much better condition than the main fracture. Areas for sectioning can be identified for subsequent metallography, chemical analysis, and mechanical...
Abstract
Fracture surfaces are fragile and subject to mechanical and environmental damage that can destroy microstructural features. This article discusses the importance of care and handling of fractures and the factors that need to be considered during the preliminary visual examination. It describes the procedures for sectioning a fracture and opening secondary cracks as well as the effect of nondestructive inspection on subsequent evaluation. The article provides information on the most common techniques for cleaning fracture surfaces. These techniques are dry air blast cleaning, replica stripping, organic-solvent cleaning, water-base detergent cleaning, cathodic cleaning, and chemical-etch cleaning.
Book Chapter
Characterization of Plastics in Failure Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... formulation constituents, FTIR is extremely useful in the determination of contaminant materials within the failed part material. While contamination is never an intended part of a plastic compound, its presence certainly can have a tremendous impact on the properties of the molded component. Through...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
1