Skip Nav Destination
Close Modal
Search Results for
pack cementation boriding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 58 Search Results for
pack cementation boriding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005772
EISBN: 978-1-62708-165-8
... involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt...
Abstract
Boriding is a thermochemical diffusion-based surface-hardening process that can be applied to a wide variety of ferrous, nonferrous, and cermet materials. It is performed on metal components as a solution for extending the life of metal parts that wear out too quickly in applications involving severe wear. This article presents a variety of methods and media used for boriding of ferrous materials, and explains their advantages, limitations, and applications. These methods include pack cementation boriding, gas boriding, plasma boriding, electroless salt bath boriding, electrolytic salt bath boriding, and fluidized-bed boriding. The article briefly describes the chemical vapor deposition process, which has emerged to be dominant among metal-boride deposition processes.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006420
EISBN: 978-1-62708-192-4
... electrolytic salt bath boriding process developed by Argonne National Laboratory (Illinois, USA) in the late 2000s had some problems with rapid deterioration of process equipment and difficulty of salt removal from the processed workpiece. Pack cementation continues to be the dominant boronizing process method...
Abstract
Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes the structures of boride layers in ferrous materials and boride-layer structures in nickel-base superalloys. The primary reason for boriding metals is to increase wear resistance against abrasion and erosion. The article reviews the wear resistance and coefficient of friction of boride layers, as well as galling resistance of borided surfaces. It concludes with a discussion on boronizing plus physical vapor deposition (PVD) overlay coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating. aluminizing boronizing chemical vapor deposition chemical vapor deposition materials chromizing multicomponent coating siliconizing CHEMICAL VAPOR...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... Abstract Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
... of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001105
EISBN: 978-1-62708-162-7
...) for products that contain a bronze, silver, or copper metal matrix; 1300 to 1500 °C (2370 to 2730 °F) for cemented carbides and borides; and 1700 to 2200 °C (3100 to 4000 °F), or even higher, for certain ceramic oxide-base cermets. For applications requiring fine machining and grinding, as in many cemented...
Abstract
Ceramic-metal composites, or cermets, combine the heat and wear resistance of ceramics with the formability of metals, filling an application niche that includes cutting tools, brake pads, heat shields, and turbine components. This article examines a wide range of cermets, including oxide cermets, carbide and carbonitride cermets, boride cermets, and other refractory types. It describes the powder metallurgy process by which cermets are produced, examining each step from powder preparation to post treatment. It discusses forming and compacting, injection molding, extrusion, rolling, pressing, slip casting, and sintering. It also discusses fundamental concepts such as chemical bonding, chemical composition, microstructure, and the development of physical and mechanical properties.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... presents information on the coating formation mechanism of superalloys and explains the steps involved in a typical pack cementation process. It concludes with information on the processing procedures and properties of pack aluminized steels. aircraft engines coating formation diffusion coatings...
Abstract
This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article presents information on the coating formation mechanism of superalloys and explains the steps involved in a typical pack cementation process. It concludes with information on the processing procedures and properties of pack aluminized steels.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
...), refractory carbides and borides have been used for short time periods. Coating deposition techniques that have been used include pack cementation, CVD, and slurry processes. Coating architectures are normally built using combinations of these techniques. In the following sections, typical coating...
Abstract
Carbon-carbon is a unique composite material in which a nonstructural carbonaceous matrix is reinforced by carbon fibers to create a heat-resistant structural material that finds application in the aerospace and defense industries. This article provides a detailed account of the fundamentals of protecting carbon-carbon composites and explains the various coating deposition techniques, namely, pack cementation, chemical vapor deposition, and slurry coatings. It includes information on the practical limitations of coatings for the carbon-carbon composites.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... an aluminide to a silicide base in the mid 1950s. A list of the basic silicide coatings is shown in Table 6 . Most of the silicide coatings are deposited by pack-cementation diffusion processes. A major deficiency in the performance of silicide-base coatings appears when the system is used in low-pressure...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006364
EISBN: 978-1-62708-192-4
...-resistant coatings, namely, compound casting, deposition welding, and thermal spraying. abrasive wear-resistant coating borides carbides metal-matrix composites cemented carbides hardness wear-resistant material cobalt alloys iron alloys nickel-base alloys wear tribomechanical properties...
Abstract
This article provides a brief introduction to abrasive wear-resistant coating materials that contain a large amount of hard phases, such as borides, carbides, or carboborides. It describes some of the commonly used methods of producing thick wear-resistant coatings. The article also provides information on metal-matrix composites and cemented carbides. The three base-alloying concepts, including cobalt-, iron-, and nickel-base alloys used for wear-protection applications, are also described. The article compares the tribomechanical properties of the materials in a qualitative manner, thus allowing a rough materials selection for practitioners. It presents a brief discussion on hot isostatic pressing (HIP) cladding, sinter cladding, and manufacturing of thick wear-resistant coatings by extrusion or ring rolling. The article also discusses the processing sequence of thick wear-resistant coatings, namely, compound casting, deposition welding, and thermal spraying.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... to tool steels that may be hardened by heat treatment. Boriding techniques include metallizing, chemical vapor deposition, and pack cementation. For additional information, see the article “Boriding (Boronizing) of Metals” in this Volume. Titanium Carbide With process temperatures in the range...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... Abstract This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
... applications where low temperature is essential. Closed-Reactor CVD or Pack Cementation The CVD systems described above use open reactors, in which reactants are introduced continuously and flow through the reactor ( Ref 1 ). Another important system utilizes a closed reactor. The chemical vapor...
Abstract
This article presents the principles of chemical vapor deposition (CVD) with illustrations. It discusses the types of CVD processes, namely, thermal CVD, plasma CVD, laser CVD, closed-reactor CVD, chemical vapor infiltration, and metal-organic CVD. The article reviews the CVD reactions of materials related to hard, tribological, and high-temperature coatings and to free-standing structures. It concludes by reviewing the advantages, disadvantages, and applications of CVD.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... processes are performed at temperatures between 700 and 1000 °C (1300 and 1800 °F). Pack boriding involves the use of boron carbide as a boron source with an activator compound such as BaF 2 , NH 4 Cl, or K 2 BF 4 . Paste boriding requires the application of a commercially available paste supplied...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... thermal mismatch stresses and low oxide-scale growth kinetics. In the higher temperature range, 1700 to 2200 °C (3090 to 3990 °F), refractory carbides and borides have been used for short time periods. Coating deposition techniques that have been used include pack cementation, CVD, and slurry processes...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005773
EISBN: 978-1-62708-165-8
..., recessed areas, and simultaneous core hardening and so on can be listed as advantages over CVD and PVD. The TRD process can be performed by use of molten salt bath, fluidized-bed, and pack cementation methods using solid reagent powders. The first productive carbide coating process was developed...
Abstract
The thermoreactive deposition and diffusion process is a heat-treatment-based method to form coatings with compacted layers of carbides, nitrides, or carbonitrides, onto some carbon/nitrogen-containing materials, including steels. The amount of active carbide forming elements/nitride forming elements, coating temperatures and time, and thickness of substrates influence the growth rate of coatings. This article lists carbide and nitride coatings that are formed on carbon/nitrogen-containing metallic materials, and describes the coating process and mechanism of coating reagents. It details the growth process and nucleation process of carbide and nitride coatings formed on the metal surface. The article discusses the advantages, disadvantages, and characteristics of the various coating processes, including high-temperature salt bath carbide coating, high-temperature fluidized-bed carbide coating, and low-temperature salt bath nitride coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... typically have been designed for specialized applications. Nonferrous materials, such as superalloys, TZM molybdenum, and cemented carbides, are also sometimes used for severe applications. Table 3 compares service temperatures of die materials used in forging operations. Typical service temperature...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... reliable protection for long periods of time at temperatures below 1700 °C (3092 °F). Experiments with a variety of refractory carbides and boride coatings formed by reaction sintering demonstrated that protection for short times up to 2200 °C (3992 °F) could be achieved with sintered ZrC and ZrB 2...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
1