Skip Nav Destination
Close Modal
Search Results for
oxygen sensors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 257 Search Results for
oxygen sensors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Electrical/Electronic Applications for Advanced Ceramics
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Fig. 36 Conductimetric (semiconductor) oxygen sensors based on (a) thin-film oxide semiconductor and (b) thick-film oxide semiconductor. Source: Ref 110 , 111
More
Image
in Electrical/Electronic Applications for Advanced Ceramics
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Fig. 37 Schematics of several variations of the oxygen sensor. (a) Four-wire lean mixture sensor. (b) Lean mixture sensor. (c) Lean burn sensor. (d) UEGO sensor. Source: Ref 88
More
Image
in Electrical/Electronic Applications for Advanced Ceramics
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Fig. 35 Sensors incorporating oxygen pumps operated at two modes: (a) coulometric and (b) amperometric. Source: Ref 105
More
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005931
EISBN: 978-1-62708-166-5
... monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control...
Abstract
Heat treating furnaces require different control systems and integration for achieving optimum technical results and enabling safe operation. This article focuses on atmosphere furnaces, with some coverage on controls for vacuum furnaces. Heat treating operations require reliable monitoring and control of motion and position of various mechanical components with the help of mechanical limit switches, proximity sensors, and distance- and position-measuring devices. Using inputs from both flow meters and sensors, such as thermocouples and oxygen sensors, flow measurement control systems must be able to adjust the flow of gases for process optimization. The operator interface of a furnace-control system displays critical information such as the furnace temperature, atmosphere status, alarms, electronic chart recorders, recipe, and maintenance. A supervisory control and data-acquisition (SCADA) system is used to monitor, collect, and store data from multiple pieces of equipment.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005740
EISBN: 978-1-62708-171-9
... engine parts are cylinder blocks, cylinder bores, cast iron cylinder liners, piston rings, connecting rod bearings, turbochargers, engine valve lifters, exhaust system parts, and oxygen sensors. The article also describes the benefits of using thermal spray on transmission parts such as synchronizer...
Abstract
This article describes the benefits that can be achieved by using thermal spray on particular engine parts of an automobile. These include improvement in fuel consumption, wear resistance and bonding, and reduction of oil consumption, exhaust heat loss, and cooling heat loss. Typical engine parts are cylinder blocks, cylinder bores, cast iron cylinder liners, piston rings, connecting rod bearings, turbochargers, engine valve lifters, exhaust system parts, and oxygen sensors. The article also describes the benefits of using thermal spray on transmission parts such as synchronizer rings and torque converters.
Image
Published: 30 September 2015
Fig. 16 Final part profiles based on the combined press-sinter simulation for the optimized design of a holder and sleeve for an oxygen sensor. (a) Initial and optimum holder designs. (b) Initial and optimum sleeve designs
More
Image
Published: 01 November 2010
Fig. 16 Final part profiles based on the combined press-sinter simulation for the optimized design of a holder and sleeve for an oxygen sensor. (a) Initial and optimum holder designs. (b) Initial and optimum sleeve designs
More
Image
Published: 30 September 2015
Fig. 3 Modeling and mesh-generation example showing the simulation of compaction and sintering for an oxygen sensor housing. (a) Mesh generation for the compact. (b) Modeling of punches and dies during compaction for the press simulation. (c) Modeling of compact in contact with the substrate
More
Image
Published: 01 November 2010
Fig. 3 Modeling and mesh-generation example showing the simulation of compaction and sintering for an oxygen sensor housing. (a) Mesh generation for the compact. (b) Modeling of punches and dies during compaction for the press simulation. (c) Modeling of compact in contact with the substrate
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006098
EISBN: 978-1-62708-175-7
... of components that were converted to stainless steel in the early 1990s. Wrought and PM stainless steel flanges and hot exhaust gas oxygen (HEGO) sensor bosses were introduced in the mid-1990s. The flanges are of various designs; some are welded onto the end of the pipe, and others are only bolted on. The HEGO...
Abstract
This article describes the physical properties of powder metallurgy (PM) stainless steels. These include thermal diffusivity, conductivity, thermal expansion coefficient, Poisson's ratio, and elastic modulus. The article contains a table that lists the characteristics of various grades of PM stainless steels. It discusses the applications of various PM stainless steels such as rearview mirror brackets, anti-lock brake system sensor rings, and automotive exhaust flanges and sensor bosses.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006066
EISBN: 978-1-62708-175-7
... metallurgy offers greater flexibility with flange designs (grooves, tapers, domes, etc.), in addition to material savings derived from its near-net shape capability. Powder metallurgy stainless steel flanges and oxygen sensor bosses are lower in cost than wrought stainless steels components...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005928
EISBN: 978-1-62708-166-5
... decarburization. It demonstrates how the carbon potential control is achieved by controlling water vapor concentration, carbon dioxide concentration, or oxygen partial pressure. The article also describes the various devices and analyzers used to monitor sampled gas from furnace atmospheres, namely...
Abstract
The atmosphere within a furnace chamber is a basic factor in achieving the desired chemical reactions with metals during heat treating. This article presents the fundamentals of heat treating atmospheres, and describes two groups of atmosphere control, namely, furnace atmosphere control and supply atmosphere control. The two basic types of atmospheric supply systems are generated atmospheres and nitrogen-base atmospheres. The article provides a brief overview of the gas reactions associated with oxidation and carbon control to ensure either carburization, or to prevent decarburization. It demonstrates how the carbon potential control is achieved by controlling water vapor concentration, carbon dioxide concentration, or oxygen partial pressure. The article also describes the various devices and analyzers used to monitor sampled gas from furnace atmospheres, namely, chromatographs, oxygen probes, Orsat analyzers, infrared analyzers, dewpoint analyzers, and hot-wire analyzers. Finally, it discusses the advantages, disadvantages, and limitations of these analyzers.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... modulators and displays. Besides piezoelectrics, a wide range of ceramic materials have been developed as gas, oxygen, temperature, voltage, and humidity sensors. Typically, these are based on semiconducting oxides such as TiO 2 , ZnO, modified BaTiO 3 , SnO 2 , and MgCr 2 O 4 . Because many...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Image
in Electrical/Electronic Applications for Advanced Ceramics
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Fig. 32 Examples of potentiometric sensors. (a) Automobile sensor. (b) Heated thin-film sensor. Partial oxygen pressures at the sensing and reference electrodes are shown as p ′ and p ″, respectivity. Source: Ref 100 , 101
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003199
EISBN: 978-1-62708-199-3
... the electrodes. The partial pressure of oxygen in the furnace atmosphere is determined by the voltage output (emf) of the sensor. Thus, carbon potential can be controlled by controlling the temperature in the furnace and the voltage output of the sensor. Fig. 9 Elements of a typical oxygen probe...
Abstract
Control of temperature and furnace atmospheres has become increasingly critical to successful heat treating. Temperature instrumentation and control systems used in heat treating include temperature sensors, controllers, final control elements, measurement instruments, and set-point programmers. This article describes these items and discusses the classifications and control of furnace atmospheres. The article also describes the surface carbon control devices available for the wide variety of furnace atmospheres and evaluation of carbon control. Finally, the article provides a set of guidelines for safety procedures that are common to all industrial heat treating furnace installations.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005736
EISBN: 978-1-62708-171-9
... A. , Köhler A. , and Hüttl G. , Cold Spraying: Innovative Layers for New Applications , J. Therm. Spray Technol. , Vol 15 ( No. 2 ), 2006 , p 177 – 180 10.1361/105996306X107977 19. Oh S. , Joseph J. , and Lankheet E.W. , Wide Range Oxygen Sensor , U.S. Patent 5,360,528...
Abstract
Thermal spray processes involve complete or partial melting of a feedstock material in a high-temperature flame, and propelling and depositing the material as a coating on a substrate. This article describes the properties of sprayed electronic materials, including dielectrics, conductors, and resistors, and discusses their implications and associated limitations for device applications and potential remedial measures. The article presents specific examples of electrical/electronic device applications, including electromagnetic interference/radio-frequency interference shielding, planar microwave devices, waveguide devices, sensing devices, solid oxide fuel cells, heating elements, electrodes for capacitors and other electrochemical devices.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006574
EISBN: 978-1-62708-290-7
... with information on sensor embedding. part qualification peel testing pushpin testing shear testing ultrasonic additive manufacturing ULTRASONIC ADDITIVE MANUFACTURING (UAM) is a solid-state hybrid manufacturing technique that leverages the principles of ultrasonic welding, mechanized tape layering...
Abstract
Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique that leverages the principles of ultrasonic welding, mechanized tape layering, and computer numerical control (CNC) machining operations to create three-dimensional metal parts. This article begins with a discussion on the process fundamentals and process parameters of UAM. It then describes metallurgical aspects in UAM. The article provides a detailed description of a wide range of mechanical characterization techniques of UAM, namely tensile testing, peel testing, and pushpin testing. The article ends with information on sensor embedding.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005757
EISBN: 978-1-62708-171-9
... systems to vent rooms in case of gas leaks, etc. Warning lights and audible sounds (sirens) Lockout/tagout stations Required use of respirators and other personal protection equipment Use of gas leak detectors and oxygen sensors Properly designed sound-attenuation spray booths Properly...
Abstract
Risk assessments (RAs) must be customized to the specific workplaces and to the actual work being performed. It is performed to make the workers and their management aware of the hazards in the work environment, identify each risk in a methodical manner, and put in place a plan to mitigate the hazards. Information on risk assessment presented in this article provides a logical approach that can be taken to minimize risk and maximize thermal spray practitioners' safety. There are basically four steps to improving operational safety by using RAs: identifying the risks for each activity, rating the risk, putting in place the actions required to minimize risk, and reviewing and updating the RAs on a regular basis. The article presents two case studies to illustrate the concepts involved in RAs.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006113
EISBN: 978-1-62708-175-7
... and are increased gradually as the test progresses. Table 1 shows a typical set of test data, and Fig. 2 is a plot of the same data. From this plot the mean lives (when 50% of specimens hold the rating) are obtained for each of the rating classes. If the specimens were not sintered properly (e.g., high oxygen...
Abstract
This article reviews various test methods used for evaluating the corrosion resistance of powder metallurgy stainless steels. These include immersion testing, salt spray testing, and electrochemical testing. The article discusses the factors that affect corrosion resistance of sintered stainless steels: compaction-related factors, sintering-related factors, and effects of alloy composition. Corrosion resistance data for sintered stainless steels is provided.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006033
EISBN: 978-1-62708-175-7
.... The preprocessor is a software tool to prepare input data for the simulation tool, including computational domain preparation such as geometry modeling and mesh generator. Figure 3 is an example of the component, compaction, and sintering models, in this case for an oxygen sensor housing. Executing this model...
Abstract
This article discusses continuum modeling, which is the most relevant approach in modeling grain growth, densification, and deformation during sintering. Continuum plasticity models are frequently used to describe the mechanical response of metal powders during compaction. The article illustrates the typical procedure for computer simulation for press and sinter process. It describes the procedure to obtain the material properties based on the generalized Shima-Oyane model. The article presents a wide variety of tests, accounting for data on the grain growth, densification, and distortion where these data help in the development of a constitutive model for sintering simulation. Finally, the article provides information on the simulation approaches used to optimize die compaction and sintering.
1