Skip Nav Destination
Close Modal
Search Results for
oxyfuel gas cutting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 109
Search Results for oxyfuel gas cutting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005175
EISBN: 978-1-62708-186-3
... Abstract Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties and compositions of fuel types such as acetylene, natural gas, propane, propylene, and methyl-acetylene-propadiene-stabilized gas. The article describes the effects of OFC on base metal, including carbon and low-alloy steels, cast irons, and stainless steels. It provides information on light cutting, medium cutting, heavy cutting, and stack cutting. The article informs that the basic oxyfuel method can be modified to allow gas cutting of metals, such as stainless steel and most nonferrous alloys, that resist continuous oxidation.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001483
EISBN: 978-1-62708-173-3
... Abstract Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC. In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural and close-tolerance shapes.
Image
Published: 01 January 2006
Fig. 1 Schematic cross section of work metal during oxyfuel gas cutting showing drag on cutting face
More
Image
Published: 01 January 2006
Fig. 2 Effects of oxyfuel gas cutting thermal cycle on shape of sections. (a) Plate with large restraint on one side of kerf, little restraint on the other side. Phantom lines indicate direction of residual stress that would cause deformation except for restraint. (b) Plate with little
More
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 December 1998
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
... Abstract This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting...
Abstract
This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting, plasma arc cutting, oxygen arc cutting, laser beam cutting, and air carbon arc cutting and gouging, describing their process capabilities, equipment used, operating principles and parameters, and factors affecting their efficiency.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005174
EISBN: 978-1-62708-186-3
... arc cutting processes. Various gas cutting processes have been known as flame cutting, burning, oxyfuel gas cutting, and oxygen cutting. The terms oxyfuel gas cutting and oxygen cutting may be more accurate than other terms. However, all the terms mentioned previously have been used. Moreover...
Abstract
This article focuses on the mechanical and nonmechanical cutting methods used in metal fabrication industries. The most prevalent equipment used for mechanical cutting includes shears, iron workers, nibblers, and band saws. Nonmechanical methods of cutting include gas cutting, electric arc cutting, and laser cutting. The article concludes with information on the advantages of abrasive waterjet cutting, which is an alternative to laser cutting, gas cutting, and plasma cutting.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
..., for oxyfuel cutting) and does not depend on a chemical reaction between the gas and the work metal. Therefore, plasma arc cutting can be used on almost any material that conducts electricity, including those that are resistant to oxyfuel gas cutting. This traditional mode is referred to as transferred arc...
Abstract
Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures recommended for plasma arc cutting and air carbon arc cutting. Special applications of electric arc cutting, including shape cutting, gouging, and underwater cutting, are also discussed. The article provides information on other electric arc cutting methods, namely, the exo-process and oxygen arc cutting. It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... bonding arc welding brazing compressed gas handling cutting electric shock electrical safety electron-beam welding explosion welding eye protection face protection friction welding high-frequency welding laser-beam welding oxyfuel gas welding protective clothing resistance welding safety...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... The conical part of an oxyfuel gas ame boxing The continuation of a llet weld around carbon arc brazing (CAB) A brazing process next to the ori ce of the tip. a corner of a member as an extension of the that produces coalescence of metals by constricted arc (plasma arc welding and cut- principal weld...
Abstract
This article is a compilation of definitions for terms related to welding fundamentals and all welding processes. The processes include arc and resistance welding, friction stir welding, laser beam welding, explosive welding, and ultrasonic welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005558
EISBN: 978-1-62708-174-0
... preparations are widely used because they are easily prepared by oxyfuel gas cutting. They are well suited for corner and T-joints ( Fig. 2 ), as well as butt joints 6 mm ( 1 4 in.) in thickness and greater. Double-bevel grooves are recommended, if welding from both sides is possible, when metal...
Abstract
This article provides information on the various types of welds and joints. It reviews the weld joint design considerations: the ability to transfer load and the cost. The article explains the throat size and weld size requirements of fillet welds, and presents a comparison of fillet and groove welds. It details the various design considerations for groove-weld selection, including the groove angle, root opening, and depth of the groove. The article also describes the methods of edge preparation and concludes with an illustration of the recommended proportions of grooves for arc welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and public demonstrations of arc or oxyfuel gas welding or cutting processes are responsible for the safety of demonstrators and the public. All welding and welding-related equipment used in trade shows and other public events must be installed by or under the supervision of a qualified individual at a site...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001484
EISBN: 978-1-62708-173-3
... Abstract Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process...
Abstract
Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process considerations, and applications of PAC. It concludes with a discussion on the safety measures associated with the PAC process.
Image
Published: 31 October 2011
Fig. 3 Schematic illustration of a typical oxyfuel gas flame used in welding and cutting, here showing an oxyacetylene flame adjusted to be (a) neutral and (b) reducing. The primary and secondary regions of combustion are shown in (a), while the acetylene “feather” characteristic of a reducing
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
... into oxygen cutting. The process can be adapted to short production runs, field work, repairs, and alterations. Metals That Can Be Oxyfuel Gas Welded Most ferrous and nonferrous metals can be oxyfuel gas welded. Oxyacetylene supplies the heat intensity and flame atmosphere necessary for welding carbon...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001376
EISBN: 978-1-62708-173-3
... bonding. The process options vary with the metal combinations and include oxyfuel gas cutting, plasma cutting, waterjet cutting, sawing, and machining. Heat Treatment Most metal systems do not require postbond heat treatment; however, some combinations provide superior properties if they are given...
Abstract
Explosion welding (EXW) is a solid-state metal-joining process that uses explosive force to create an electron-sharing metallurgical bond between two metal components. This article discusses the process attributes of EXW, including metallurgical attributes, metal combinations, size limitations, configuration limitations, and bond zone morphology. It provides an overview of the common industrial applications and shop welding applications of EXW products. The article reviews different safety standards and regulations, such as noise and vibration abatement and process geometry. It concludes with a section on the EXW process sequence for welding a two-component flat plate product.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005734
EISBN: 978-1-62708-171-9
..., erosive wear, adhesive wear, and surface fatigue. abrasive wear adhesive wear cavitation erosion coating erosive wear surface fatigue thermal spray coating wear resistance DURING THE DESIGN of many devices, such as gas turbines used in power generation and aerospace, compressors, pumps...
Abstract
The use of thermal spray coatings to restore worn surfaces has provided a significant improvement in surface performance due to improved wear resistance. This article discusses the general use of thermal spray coatings in reducing predominant types of wear, namely, abrasive wear, erosive wear, adhesive wear, and surface fatigue.
1