Skip Nav Destination
Close Modal
Search Results for
oxyfuel gas cutting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 95 Search Results for
oxyfuel gas cutting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005175
EISBN: 978-1-62708-186-3
...Abstract Abstract Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article discusses the operation principles and process capabilities of the OFC. It reviews the properties and compositions of fuel types such as acetylene, natural gas, propane, propylene, and methyl-acetylene-propadiene-stabilized gas. The article describes the effects of OFC on base metal, including carbon and low-alloy steels, cast irons, and stainless steels. It provides information on light cutting, medium cutting, heavy cutting, and stack cutting. The article informs that the basic oxyfuel method can be modified to allow gas cutting of metals, such as stainless steel and most nonferrous alloys, that resist continuous oxidation.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001483
EISBN: 978-1-62708-173-3
...Abstract Abstract Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC. In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural and close-tolerance shapes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
...Abstract Abstract This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas...
Abstract
This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting, plasma arc cutting, oxygen arc cutting, laser beam cutting, and air carbon arc cutting and gouging, describing their process capabilities, equipment used, operating principles and parameters, and factors affecting their efficiency.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005174
EISBN: 978-1-62708-186-3
... arc cutting processes. Various gas cutting processes have been known as flame cutting, burning, oxyfuel gas cutting, and oxygen cutting. The terms oxyfuel gas cutting and oxygen cutting may be more accurate than other terms. However, all the terms mentioned previously have been used. Moreover...
Abstract
This article focuses on the mechanical and nonmechanical cutting methods used in metal fabrication industries. The most prevalent equipment used for mechanical cutting includes shears, iron workers, nibblers, and band saws. Nonmechanical methods of cutting include gas cutting, electric arc cutting, and laser cutting. The article concludes with information on the advantages of abrasive waterjet cutting, which is an alternative to laser cutting, gas cutting, and plasma cutting.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
..., or 5500 °F, for oxyfuel cutting) and does not depend on a chemical reaction between the gas and the work metal. Therefore, plasma arc cutting can be used on almost any material that conducts electricity, including those that are resistant to oxyfuel gas cutting. This traditional mode is referred...
Abstract
Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures recommended for plasma arc cutting and air carbon arc cutting. Special applications of electric arc cutting, including shape cutting, gouging, and underwater cutting, are also discussed. The article provides information on other electric arc cutting methods, namely, the exo-process and oxygen arc cutting. It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... operations. adhesive bonding arc welding brazing compressed gas handling cutting electric shock electrical safety electron-beam welding explosion welding eye protection face protection friction welding high-frequency welding laser-beam welding oxyfuel gas welding protective clothing...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005558
EISBN: 978-1-62708-174-0
... member. Single-bevel groove preparations are widely used because they are easily prepared by oxyfuel gas cutting. They are well suited for corner and T-joints ( Fig. 2 ), as well as butt joints 6 mm ( 1 4 in.) in thickness and greater. Double-bevel grooves are recommended, if welding from both...
Abstract
This article provides information on the various types of welds and joints. It reviews the weld joint design considerations: the ability to transfer load and the cost. The article explains the throat size and weld size requirements of fillet welds, and presents a comparison of fillet and groove welds. It details the various design considerations for groove-weld selection, including the groove angle, root opening, and depth of the groove. The article also describes the methods of edge preparation and concludes with an illustration of the recommended proportions of grooves for arc welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and public demonstrations of arc or oxyfuel gas welding or cutting processes are responsible for the safety of demonstrators and the public. All welding and welding-related equipment used in trade shows and other public events must be installed by or under the supervision of a qualified individual at a site...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001376
EISBN: 978-1-62708-173-3
... bonding. The process options vary with the metal combinations and include oxyfuel gas cutting, plasma cutting, waterjet cutting, sawing, and machining. Heat Treatment Most metal systems do not require postbond heat treatment; however, some combinations provide superior properties if they are given...
Abstract
Explosion welding (EXW) is a solid-state metal-joining process that uses explosive force to create an electron-sharing metallurgical bond between two metal components. This article discusses the process attributes of EXW, including metallurgical attributes, metal combinations, size limitations, configuration limitations, and bond zone morphology. It provides an overview of the common industrial applications and shop welding applications of EXW products. The article reviews different safety standards and regulations, such as noise and vibration abatement and process geometry. It concludes with a section on the EXW process sequence for welding a two-component flat plate product.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001484
EISBN: 978-1-62708-173-3
...Abstract Abstract Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process...
Abstract
Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process considerations, and applications of PAC. It concludes with a discussion on the safety measures associated with the PAC process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
... into oxygen cutting. The process can be adapted to short production runs, field work, repairs, and alterations. Metals That Can Be Oxyfuel Gas Welded Most ferrous and nonferrous metals can be oxyfuel gas welded. Oxyacetylene supplies the heat intensity and flame atmosphere necessary for welding carbon...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... permit one of several sizes of welding tips or a cutting attachment to be added. The general construction of an OFW torch is shown schematically in Fig. 2 . The principal operating parts are inlet valves, rear body, handle, and head. Fig. 2 Oxyfuel gas welding torch Flame Adjustment...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005734
EISBN: 978-1-62708-171-9
..., glass mold plungers, cutting blades (a) PS, plasma spray; OFR, oxyfuel rod spray; HVOF, high-velocity oxyfuel powder spray; HVAF, high-velocity air-fuel powder spray; DG, detonation gun; OFP, oxyfuel powder spray. (b) Contains carbon and forms carbide particles that are not granular...
Abstract
The use of thermal spray coatings to restore worn surfaces has provided a significant improvement in surface performance due to improved wear resistance. This article discusses the general use of thermal spray coatings in reducing predominant types of wear, namely, abrasive wear, erosive wear, adhesive wear, and surface fatigue.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... use similar energy sources (e.g., electric arcs and oxyfuel gas combustion) for related, thermally-based processes such as cutting and material thermal spraying. Third, it gives the AWS designation acronym for short-hand reference to a specific process (e.g., GMAW for gas metal arc welding). Fig...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
...) Powder Flame temperatures and characteristics depend on the oxygen-to-fuel gas ratio and pressure. The approximate temperatures for stoichiometric combustion at 1 atm for some oxyfuel combinations are shown in Table 1 . The flame spray process is characterized by low capital investment, high...
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... FRW friction welding FS furnace soldering ft foot FW flash welding g gram g acceleration due to gravity gf gram force GMA gas metal arc GMAC gas metal arc cutting GMAW gas metal arc welding GPa gigapascal GTA gas tungsten arc GTAC gas tungsten arc...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001476
EISBN: 978-1-62708-173-3
... in AWS specification D11.2 (“Guide for Welding Iron Castings”): Shielded metal arc welding Gas-metal arc welding Flux-cored arc welding Gas-tungsten arc welding Submerged arc welding The gas processes used for the repair of iron castings are oxyfuel welding (OFW) and braze welding...
Abstract
Repair and maintenance of parts and components is carried out as a logical procedure that ensures the production of a usable and safe component or it can be approached haphazardly. This article describes the requirements and repair techniques of arc and oxyfuel welding processes to repair weld defects and structural failures. It further discusses the preliminary assessment and base-metal preparation involved in weld repair. Furthermore, the article provides information on the general repair guidelines that are followed to ensure successful weld repairs of both ferrous (carbon steels, cast irons, and stainless steels) and nonferrous (titanium) base metals.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
... welding gas metal arc welding gas tungsten arc welding gray iron groove-face grooving joint design malleable iron oxyfuel welding peening plasma spraying repair welding shielded metal arc welding submerged arc welding thermal spraying thermite welding welding CAST IRON is considerably...
Abstract
This article describes some examples of the different welding processes for gray, ductile, and malleable irons. These processes include fusion welding, repair welding, shielded metal arc welding, gas metal arc welding, flux cored arc welding, gas tungsten arc welding, submerged arc welding, oxyfuel welding, and braze welding. The article discusses various special techniques, such as groove-face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article describes other fusion welding methods such as electrical resistance welding and thermite welding. It reviews thermal spraying processes, such as flame spraying, arc spraying, and plasma spraying, of a cast iron.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
... subsequent machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding. braze welding carbon...
Abstract
Cast iron can be described as an alloy of predominantly iron, carbon, and silicon. This article discusses the classification of cast irons, such as gray cast iron, white cast iron, malleable cast iron, ductile cast iron, and compacted graphite iron. It reviews the various special techniques, such as groove face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article discusses the need for postweld heat treatment that depends on the condition of the casting, possible distortion during subsequent machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding.