Skip Nav Destination
Close Modal
By
Raúl B. Rebak
By
Clément Lemaignan
By
Te-Lin Yau, Richard C. Sutherlin
By
Paul Crook
By
R.M. Latanision, D.B. Mitton
By
Stephen D. Cramer, Bernard S. Covino, Jr., Gordon R. Holcomb, Małgorzata Ziomek-Moroz, Jack Tinnea
By
Daniel E. Groteke, David V. Neff
By
Stephen D. Antolovich, Ashok Saxena
By
Jude Mary Runge, John Weritz
Search Results for
oxidizing conditions
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2134
Search Results for oxidizing conditions
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Image
Temperature profile through the oxide layer in heat flow condition. Tempera...
Available to Purchase
in Corrosion of Zirconium Alloy Components in Light Water Reactors
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 2 Temperature profile through the oxide layer in heat flow condition. Temperature decreasing from zirconium alloy to coolant
More
Book Chapter
Corrosion of Tantalum and Tantalum Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... Abstract Tantalum is one of the most versatile corrosion-resistant metals known. The outstanding corrosion resistance and inertness of tantalum are attributed to a very thin, impervious, protective oxide film that forms on exposure of the metal to slightly anodic or oxidizing conditions...
Abstract
Tantalum is one of the most versatile corrosion-resistant metals known. The outstanding corrosion resistance and inertness of tantalum are attributed to a very thin, impervious, protective oxide film that forms on exposure of the metal to slightly anodic or oxidizing conditions. This article provides a discussion on the mechanism of corrosion resistance and on the behavior of tantalum in different corrosive environments, namely, acids; salts; organic compounds; reagents, foods, and pharmaceuticals; body fluids and tissues; and gases. It contains several tables that summarize the effects of acids, salts, and miscellaneous corrosive reagents on tantalum and applications for tantalum equipment in chemical, pharmaceutical, and other industries. Finally, the article presents a discussion on hydrogen embrittlement, the galvanic effects, and cathodic protection of tantalum and describes the corrosion resistance of different types of tantalum-base alloys.
Book Chapter
Engineering Tables: Ceramics and Glasses
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003004
EISBN: 978-1-62708-200-6
... Abstract This article is a comprehensive collection of engineering property data in tabulated form for ceramics and glasses. Data are provided for physical and mechanical properties of ceramic materials and color of ceramics fired under oxidizing and reducing conditions. The article also lists...
Abstract
This article is a comprehensive collection of engineering property data in tabulated form for ceramics and glasses. Data are provided for physical and mechanical properties of ceramic materials and color of ceramics fired under oxidizing and reducing conditions. The article also lists the materials characterization techniques for ceramics and glasses.
Image
A metal screen used to retain insulation to the inlet box of a gas cooler s...
Available to PurchasePublished: 01 January 2005
% SO 2 /SO 3 ) were to remain oxidizing at all times, with temperatures at 850 to 900 °C (1560 to 1650 °F). Upsets on the acid plant included poor process controls, inadequate air cooling, incomplete combustion, and unstable flames, with very many temperature cycles due to interruptions in power supply
More
Image
Corrosion behavior of alloys from five nickel alloy groups compared to that...
Available to Purchase
in Effects of Metallurgical Variables on the Corrosion of High-Nickel Alloys
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Fig. 1 Corrosion behavior of alloys from five nickel alloy groups compared to that of 316L stainless steel (SS). (a) In boiling 10% sulfuric acid, reducing conditions. (b) In 10% boiling nitric acid, oxidizing conditions. Source: Data from Ref 3
More
Book Chapter
Effects of Metallurgical Variables on the Corrosion of High-Nickel Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003619
EISBN: 978-1-62708-182-5
... that the alloy experiences, and it is controlled by the cathodic reaction in the system. Thus, a reducing condition is generally controlled by the discharge of hydrogen from a reducing acid, such as hydrochloric acid. An oxidizing environment has a potential that is higher than the potential for hydrogen...
Abstract
The article provides an introduction on the importance of alloying elements on corrosion behavior of nickel alloys and describes the applications of heat-resistant alloys to resist corrosion. It focuses on the metallurgical effects, mainly the effect of internal factors, including chemical composition and microstructure of the alloy, and the external factors, including electrolyte composition, temperature, and electrode potential, on the corrosion behavior of corrosion-resistant alloys. The article also discusses the implication of changing the alloy microstructure by second-phase precipitation, cold working, and cast and wrought forms on the corrosion behavior of high-nickel alloys.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004180
EISBN: 978-1-62708-184-9
... hydrogen from acids. The 400-series stainless steels exhibit borderline passivity and thus are seldom selected, whereas the 300-series stainless steels are the materials of choice. The grades in the 300 series of stainless steels require oxidizing conditions to maintain their passivity, especially at high...
Abstract
Organic acids represent a key group of industrial chemicals. This article provides information on the corrosion characteristics of organic acids. It focuses on corrosion caused by acetic, formic, and propionic acids on various metals and alloy groups. These include steel, aluminum, copper and its alloys, stainless steels, titanium, and nickel alloys. The article also provides information on longer-chain organic acids.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
... protective oxide scale formed in sulfur-free oxidizing gas. (b) Sulfide-oxide scale formed in reducing conditions containing hydrogen sulfide. Courtesy of I.G. Wright, Battelle Columbus Division The latter circumstance can be assessed from the Pilling-Bedworth ratio, which is the ratio of the volumes...
Abstract
When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion.
Book Chapter
Corrosion of Zirconium Alloy Components in Light Water Reactors
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004148
EISBN: 978-1-62708-184-9
... in water and heat flow conditions that causes irradiation on the zirconium alloy assemblies. It discusses the effect of irradiation on the microstructure and morphology of cladded linings. The article describes the impact of metallurgical parameters on the oxidation resistance of zirconium alloys...
Abstract
The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys in water and heat flow conditions that causes irradiation on the zirconium alloy assemblies. It discusses the effect of irradiation on the microstructure and morphology of cladded linings. The article describes the impact of metallurgical parameters on the oxidation resistance of zirconium alloys. It concludes with a discussion on LWR coolant chemistry and corrosion of fuel rods in reactors.
Book Chapter
Corrosion of Zirconium and Zirconium Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003823
EISBN: 978-1-62708-183-2
... dry organic halides. Consequently, zirconium is not suitable for handling these media. In addition, zirconium is susceptible to localized corrosion, such as pitting and stress-corrosion cracking in chloride solutions under oxidizing conditions. However, zirconium is not susceptible to crevice...
Abstract
This article provides a description of the classification, industrial applications, microstructures, physical, chemical, corrosion, and mechanical properties of zirconium and its alloys. It discusses the formation of oxide films and the effects of water, temperature, and pH on zirconium. The delayed hydride cracking of zirconium is also described. The article provides information on the resistance of zirconium to various types of corrosion, including pitting corrosion, crevice corrosion, intergranular corrosion, galvanic corrosion, microbiologically induced corrosion, erosion-corrosion, and fretting corrosion. The article explains the effects of tin content in zirconium and effects of fabrication on corrosion. Corrosion control measures for all types of corrosion are also highlighted. The article concludes with information on the safety precautions associated with handling of zirconium.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003357
EISBN: 978-1-62708-195-5
... conditions that minimally expose the fibers to oxygen, and upper-use temperatures higher than possible with oxide/oxide CMC and state of the art metallic superalloys. Minimal oxygen exposure is typically achieved by incorporating the fibers in dense protective matrices of similar composition and thermal...
Abstract
This article focuses on the production methods, properties, and applications of two main types of commercially available continuous-length ceramic fibers, namely, oxide fibers based on the alumina-silica system and on alpha-alumina, and nonoxide fibers based primarily on beta-phase silicon carbide. It provides a discussion on factors that are considered in understanding thermostructural capability of ceramic fiber for high-temperature ceramic-matrix composites (CMC) applications. The article tabulates other commercial oxide and nonoxide fiber types for CMC reinforcement.
Book Chapter
Introduction to Corrosion of Nonferrous Metals and Specialty Products
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
... hydrofluoric acid. Commercially pure nickel is particularly resistant to caustic soda. On the high-temperature side, strong nickel alloys are available to resist oxidation, carburization, metal dusting, and sulfidizing-oxidizing conditions. Titanium Despite being the ninth most abundant element...
Abstract
Nonferrous metals and alloys are widely used to resist corrosion. This article describes the corrosion behavior of the most widely used nonferrous metals, such as aluminum, copper, nickel, and titanium. It also provides information on several specialty nonferrous products that cannot easily be categorized by elemental base.
Book Chapter
Corrosion in Supercritical Water—Waste Destruction Environments
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004132
EISBN: 978-1-62708-184-9
... 2 O, heteroatoms are converted to inorganic compounds (usually acids, salts, or oxides in high-oxidation states). The formation of acids at elevated temperatures and pressures under very oxidizing conditions may result in severe corrosion. Thus, while SCWO is an effective process for the destruction...
Abstract
Supercritical water oxidation (SCWO) is an effective process for the destruction of military and industrial wastes including wastewater sludge. This article discusses the unique properties of supercritical water and lists the main technological advantages of SCWO. For many waste streams, corrosion continues to be one of the central challenges to the full development of the SCWO technology. The article presents a summary of selected materials exposed to various environments as well as the observed form of corrosion in a table. It also illustrates the necessity to adopt a synergistic approach incorporating feed chemistry control, reactor design modifications, and intelligent materials selection, for mitigating degradation of SCWO systems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003671
EISBN: 978-1-62708-182-5
... kinetics. The diagrams are for equilibrium conditions. Equilibrium may be reached quickly in high- temperature oxidation, but if the metal or alloy is then cooled, equilibrium may not be reestablished. Microenvironments, such as gases in voids or cracks, may create conditions that differ considerably...
Abstract
This article provides information on the thermodynamics and kinetics of high-temperature corrosion. The thermodynamics of high-temperature corrosion reactions reveals what reactions are possible under certain conditions and kinetics explains how fast these possible reactions will proceed. The article describes the diffusion process that plays a key role in oxidation and other gaseous reactions with metals. It discusses the development of stress in oxide layers. The article presents the sample preparation methods for high-temperature testing, and expounds the measurement methods of high-temperature degradation. It reviews a number of potential processes, which are responsible for high-temperature corrosion. The article details a wide range of coatings and coating processes for protecting components in a variety of operating conditions. It also discusses the testing methods used for materials at high temperatures, including furnace tests, burner rig testing, and thermogravimetric analysis, and the test methods conducted at high temperature and high pressure.
Book Chapter
Conventions and Definitions in Corrosion and Oxidation
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003709
EISBN: 978-1-62708-182-5
... An anion is an ion that has a negative charge. An anion will move toward the anode in an electric field. Anode In an electrochemical cell, the anode is the electrode where oxidation takes place. See also the section “ Cell Types and Conditions for Commercial and Industrial Processes...
Abstract
This article presents common conventions and definitions in corrosion, electrochemical cells, cathodic protection (CP), electricity, and oxidation. Evans diagrams for impressed current CP in neutral or basic environment and galvanic or sacrificial CP, in both neutral or basic environment and acidic environment, are illustrated.
Book Chapter
Dross, Melt Loss, and Fluxing of Light Alloy Melts
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005285
EISBN: 978-1-62708-187-0
.... In addition to the growth of oxide films and dross on the melt surfaces that are induced by exposure to general atmospheric conditions, there are a number of factors encountered in industrial melters that can supplement and even alter the growth factors. These include turbulence induced by the mode of melting...
Abstract
Dross, which is the oxide-rich surface that forms on melts due to exposure to air, is a term that is usually applied to nonferrous melts, specifically the lighter alloys such as aluminum or magnesium. This article describes dross formation and ways to reduce it, the economic implications of dross, and in-plant enhancement or recovery of dross. It discusses the influence of the melter type on dross generation and the influence of charge materials and operating practices on melt loss. Fluxing is a word applied in a broad sense to a number of melt-treating methods. The article also discusses the in-furnace treatment with chemical fluxes.
Book Chapter
Thermomechanical Fatigue: Mechanisms and Practical Life Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
...-grained materials than to fine-grained ones since the spacing of slip bands will be greater and the stresses at the tip of the slip band will be higher. Thermomechanical Fatigue Life Model with Stable Precipitate Structure and Plasticity/Oxidation Conditions for this situation are assumed...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Book Chapter
Metallurgy Basics for Aluminum Surface Treatment
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
... corrosion resistance and surface treatment. It describes the thermodynamics of equilibrium oxidation processes and non-equilibrium corrosion processes. The article provides a discussion on aluminum oxidation under atmospheric and dynamic conditions. It presents the potential/pH (Pourbaix) diagram...
Abstract
This article discusses the properties of aluminum surface and the applications of aluminum alloys. It explains the effects of trace elements on aluminum alloys. The article considers microstructural development of aluminum in terms of the surface and explains how it will impact corrosion resistance and surface treatment. It describes the thermodynamics of equilibrium oxidation processes and non-equilibrium corrosion processes. The article provides a discussion on aluminum oxidation under atmospheric and dynamic conditions. It presents the potential/pH (Pourbaix) diagram for aluminum under atmospheric and dynamic conditions. The article also explains the polarization effects during the formation of stable aluminum oxide under dynamic conditions. It concludes with information on the designation system for aluminum finishes.
Book Chapter
Corrosion of Cast Irons
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... in a Charpy testing machine. (d) Standard Charpy Up to 3% Si is normally present in all cast irons; in larger percentages, silicon is considered an alloying element. It promotes the formation of a strongly protective surface film under oxidizing conditions such as exposure to oxidizing acids...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
1