Skip Nav Destination
Close Modal
Search Results for
oxide reduction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1593
Search Results for oxide reduction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 1 The pH and oxidation reduction potential for growth of anaerobic bacteria able to reduce nitrate or sulfate (dots in plots) and for soils dominated by the microbial metabolism (boxes). Aerobic bacteria grow over a wide range of pH at E h > 300 mV (normal hydrogen electrode
More
Image
Published: 01 August 2013
Fig. 13 Treatment of rinses from nitriding operations. ORP, oxidation-reduction potential Ref 9
More
Image
Published: 15 December 2019
Fig. 13 Voltammogram of a single-electron oxidation reduction. See text for further explanation.
More
Image
Published: 30 September 2015
Fig. 6 Equilibrium ratios at various temperatures for oxidation-reduction and decarburization-carburization reactions. Equilibrium reactions: R, reducing; C, carburizing; O, oxidizing; D, decarburizing. Source: Ref 4
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001070
EISBN: 978-1-62708-162-7
... Abstract This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four...
Abstract
This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four major methods for making copper and copper alloy powders, atomization and oxide reduction are presently practiced on a large scale in North America. The article provides information on the mechanism, production, properties, composition and applications of different types of copper-base P/M products, including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
... Abstract This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods...
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001269
EISBN: 978-1-62708-170-2
...-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these. alkaline cleaning chemical pickling contaminant removal continuously applied coatings electrolytic cleaning...
Abstract
This article focuses on the various techniques for removing contaminants in the surface preparation of steel for hot-dip coatings: wet cleaning methods, including alkaline cleaning, electrolytic cleaning, chemical pickling, and electrolytic pickling; flame cleaning and furnace-atmosphere techniques, such as Sendzimir oxidation/reduction method; other specialized methods, namely, fluxes, mechanical cleaning, and ultrasonic methods; or a combination of these.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
..., electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006139
EISBN: 978-1-62708-175-7
... Abstract This article describes the fundamentals of various techniques used for the production of copper and copper alloy powders. These include atomization (water, air, and gas), oxide reduction, and electrolysis. The article discusses the effects of electrolyte composition and operating...
Abstract
This article describes the fundamentals of various techniques used for the production of copper and copper alloy powders. These include atomization (water, air, and gas), oxide reduction, and electrolysis. The article discusses the effects of electrolyte composition and operating conditions on the characteristics of copper and copper alloy powders.
Image
Published: 30 September 2015
Fig. 5 Equilibrium oxygen partial pressure, p O2 , for reduction of oxides. Hydrogen gas with a –35 °C dewpoint of −35 °C (−31 °F) is reducing with respect to cobalt and tungsten oxides but is oxidizing with respect to TiC.
More
Image
Published: 01 January 1997
Fig. 1 Schematic representation of oxidation and reduction reactions occurring on a corroding metal surface. Source: Ref 5
More
Image
Published: 01 January 1997
Fig. 4 Schematic Evans diagram showing oxidation and reduction reactions associated with, for instance, M → M + and H + → H 2 reactions, illustrating the fact that when the relevant oxidation and reduction reaction rates are in dynamic equilibrium, the metal/solution interface will attain
More
Image
Published: 01 January 2005
Image
Published: 01 January 2003
Fig. 10 Evans diagram for one anodic dissolution reaction coupled (separately) to one of two different oxidant reduction reactions. (a) The two oxidant reduction reactions have similar kinetic characteristics (i.e., similar current-potential shapes). (b) The two oxidant reduction reactions
More
Image
Published: 30 September 2015
Fig. 2 (a) Relationship between dewpoint and water vapor content. (b) Equilibrium values of H 2 /H 2 O ratio and dewpoint for selected oxides. (c) Oxidation-reduction of chromium oxide for pure chromium in hydrogen
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003579
EISBN: 978-1-62708-182-5
... copper ions, zinc will dissolve, while copper will deposit from its ions on to the zinc. This metal-displacement reaction is due to the oxidation-reduction reaction between zinc metal and copper ions: (Eq 8) Zn ( s ) + Cu 2 + ( aq ) → Zn 2 + ( aq ) + Cu ( s...
Abstract
The electrode potential is one of the most important parameters in the thermodynamics and kinetics of corrosion. This article discusses the fundamentals of electrode potentials and illustrates the thermodynamics of chemical equilibria by using the hydrogen potential scale and the Nernst equation. It describes galvanic cell reactions and corrosion reactions in an aqueous solution in an electrochemical cell. The article explores the most common cathodic reactions encountered in metallic corrosion in aqueous systems. The reactions included are proton reduction, water reduction, reduction of dissolved oxygen, metal ion reduction, and metal deposition. The article also presents the standard equilibrium potentials measured at 25 deg C relative to a standard hydrogen electrode for various metal-ion electrodes in a tabular form.
Image
Published: 01 January 2003
Fig. 1 Schematic representation of the influence of a potential change on the activation energy during charge transfer in an oxidation-reduction reaction
More
Image
Published: 01 January 2003
Fig. 12 Partial Evans diagram (i.e., showing only the partial current for the oxidant reduction reaction) for mixed activation-concentration polarization
More
Image
Published: 01 January 2003
Fig. 8 Current-potential relationships for a metal dissolution/deposition process (M ↔ M n + + e − ) and an oxidant/reductant reaction (O + ne − ↔ R) showing the coupling together of the anodic component of one reaction to the cathodic component of the other to yield a corrosion
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006086
EISBN: 978-1-62708-175-7
... used mechanical methods include water and gas atomization, milling, mechanical alloying, and electrolysis. Some chemical methods include reduction of oxides. This article provides information on the reliable techniques for powder characterization and testing to evaluate the chemical and physical...
Abstract
Various powder production processes allow precise control of the chemical composition and physical characteristics of powders and allow tailoring of specific attributes for targeted applications. Metal powders are produced by either mechanical methods or chemical methods. The commonly used mechanical methods include water and gas atomization, milling, mechanical alloying, and electrolysis. Some chemical methods include reduction of oxides. This article provides information on the reliable techniques for powder characterization and testing to evaluate the chemical and physical properties of metal powders, both as individual particles and in bulk forms.
1