Skip Nav Destination
Close Modal
Search Results for
orthorhombic alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 140 Search Results for
orthorhombic alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003164
EISBN: 978-1-62708-199-3
... (Ni3Al and NiAl), iron aluminides (Fe3Al and FeAl) and titanium aluminides (alpha-2 alloys, orthorhombic alloys, and gamma alloys). alloying effects corrosion resistance crystallographic data fabrication iron aluminides mechanical properties nickel aluminides processing of aluminides...
Abstract
Alloys based on ordered intermetallic compounds constitute a unique class of metallic material that form long-range ordered crystal structures below a critical temperature. Aluminides, a unique class of ordered intermetallic materials, possesses many attributes like low densities, high melting points, and good high-temperature strength that make them an attractive material for high-temperature structural application. This article discusses the properties, chemical composition, corrosion resistance, processing, fabrication, alloying effects and crystallographic data of nickel aluminides (Ni3Al and NiAl), iron aluminides (Fe3Al and FeAl) and titanium aluminides (alpha-2 alloys, orthorhombic alloys, and gamma alloys).
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the physical metallurgy and weldability of four families of titanium-base alloys, namely, near-alpha alloy, alpha-beta alloy, near-beta, or metastable-beta alloy, and titanium based intermetallics that include alpha-2, gamma, and orthorhombic systems...
Image
Published: 01 January 2005
Fig. 13 Engineering stress-strain curves for an orthorhombic titanium alloy (Ti-21Al-22Nb) tested at 980 °C and a range of initial strain rates (s −1 ). Source: Ref 15
More
Image
in Modeling and Simulation of Cavitation during Hot Working
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 21 Micrographs of (a) an orthorhombic titanium aluminide alloy that failed in tension by flow localization (Source: Ref 63 ) and (b) a near-gamma titanium aluminide alloy that failed in tension by fracture (cavitation) (Source: Ref 64 )
More
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 3 Crystal structures for different phases in titanium alloys. (a) Body-centered cubic β phase. (b) Hexagonal close-packed α (α′) phase. (c) Orthorhombic α″ phase. (d) Hexagonal ω phase
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003716
EISBN: 978-1-62708-182-5
... metal. Stresses affect the diffusion process and modify the oxidation mechanism and very often cause scale spallation. Improved oxidation resistance can be achieved by developing better alloys, by applying protective coatings, and by altering the composition of the gas phase. Fundamental Data...
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
... within the martensite plates. Titanium, zirconium, hafnium, and lithium alloys generally transform from bcc (β-phase) to hcp structures, although fcc and orthorhombic martensite structures have been reported in some titanium and zirconium alloys ( Ref 28 ). The bcc transformation to hcp in zirconium has...
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... in crystallography. For alloys that contain two or more elements, the placement of the alloying elements in the crystal structure can be random or ordered. Random elemental placements are referred to as solid solutions. For example, pure gold and silver have face-centered cubic (fcc) crystal structures...
Abstract
The crystal structure of a material is an important aspect of corrosion and oxidation processes. This article provides a general introduction to the crystal structure of materials, providing information on the crystal systems, lattice dimensions, nomenclature, and solid-solution mechanisms used to characterize structures. It illustrates the unit cells and ion positions for some simple metal crystals, arranged alphabetically according to the Pearson symbol. The space lattice and crystal system, space-group notation, and prototype for each crystal are also illustrated.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
.... It is orthorhombic when ordered, and face-centered cubic when disordered. Figure 8 shows a two-dimensional long-period superlattice as in certain AB 3 alloys (Cu-Pd, Au-Zn, Au-Mn), having antiphase boundaries spaced at intervals M 1 and M 2 and unit-cell dimensions a, b, and c, in the ordered state...
Abstract
Crystal structure is the arrangement of atoms or molecules in the solid state that involves consideration of defects, or abnormalities, in idealized atomic/molecular arrangements. The three-dimensional aggregation of unit cells in the crystal forms a space lattice or Bravais lattice. This article provides a brief review of the terms and basic concepts associated with crystal structures. It also discusses some of the significant defects obstructing plastic flow in real crystals, namely point defects, line defects, stacking faults, twins, and cold work. Several tables in the article provide information on the crystal structures and lattice parameters of allotropes of metallic elements.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003124
EISBN: 978-1-62708-199-3
... precursors to face-centered orthorhombic Al 2 CuMg precipitates are used to strengthen several structural alloys used in the aerospace industry because they confer a desirable combination of strength, fracture toughness, and resistance to the growth of fatigue cracks. Zinc This element confers little...
Abstract
The physical and mechanical properties of aluminum alloy can be improved by strengthening mechanisms such as strain hardening used for non-heat treatable aluminum alloy and precipitation hardening used for heat treatable aluminum alloy. This article focuses on the effect of strengthening mechanisms on the physical and mechanical properties of non-heat treatable and heat treatable aluminum alloys. It describes the use of the aluminum alloy phase diagram in determining the melting temperature, solidification path, equilibrium phases, and explains the effect of alloying element in phase formation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... stress-strain curves obtained from hot-tension testing of an orthorhombic titanium aluminide alloy ( Ref 15 ) at 980 °C (1800 °F) and a range of nominal (initial) strain rates are shown in Fig. 13 . The curves exhibit a stress maximum at strains less than 10%, a regime of quasi-stable flow during which...
Abstract
This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot-tension test data, which helps to gain information on a number of material parameters and material coefficients. It details the effect of test conditions on flow behavior. The article briefly describes the detailed interpretation of data from the isothermal hot-tension test using numerical model. It also explains the cavitation mechanism and failure modes that occur during hot-tension testing.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... as metastable or stable phase in highly enriched alloys α ′ Nonequilibrium phase due to martensitic transformation; hcp structure α″ Martensite with orthorhombic structure α 2 Ti 3 Al; exists over a wide range of aluminum content; has an ordered hexagonal structure, DO 13 ω A high-pressure...
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006268
EISBN: 978-1-62708-169-6
... (e.g., 250 °C, or 480 °F) Orthorhombic, a = 0.684 nm b = 0.405 nm c = 0.793 nm Rods, coherent only along ⟨001⟩ α Al 4 Mg 2 Si 5 In Si-rich alloys 30 , 31 U2 Overaged (e.g., 250 °C, or 480 °F) Orthorhombic (Pnma), a = 0.675 nm b = 0.405 nm c = 0.794 nm Laths, coherent only...
Abstract
This article describes the effects of alloying and heat treatment on the metastable transition precipitates that occur in age hardenable aluminum alloys. Early precipitation stages are less well understood than later ones. This article details the aging sequence and characteristics of precipitates that occur in the natural aging and artificial aging of Al-Mg-Si-(Cu) alloys, Al-Mg-Cu alloys, microalloyed Al-Mg-Cu-(Ag, Si) alloys, aluminum-lithium-base alloys, and Al-Zn-Mg-(Cu) alloys. Crystal structure, composition, dimensions, and aging conditions of precipitates are detailed. Effects of reversion, duplex annealing, and retrogression and re-aging are included.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003371
EISBN: 978-1-62708-195-5
... interest in niobium-rich Ti 3 Al alloys for continuous fiber- reinforced MMC applications, due to the presence of an orthorhombic (O) phase based on the compound Ti 3 AlNb. This O-phase was first found in a Ti-25Al-12.5 Nb (at.%) alloy. The O- phase is similar in nature to α2 (Ti 3 Al, DO 19 structure...
Abstract
Metallic matrices are essential constituents for the fabrication of metal-matrix composites (MMCs). This article describes three different classes of aluminum alloys, namely, commercial aluminum alloys, low-density and high-modulus alloys, and high temperature alloys. It presents typical tensile properties and fracture toughness of the selected heat treatable aluminum alloys in a table. Titanium alloys are very attractive for MMC applications, due to their higher strength and temperature capability compared to aluminum alloys. The article tabulates the effect of heat treatment on room-temperature properties and tensile properties of Ti-25Al-17Nb alloy sheet.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001085
EISBN: 978-1-62708-162-7
... microstructures. Both of these phase are orthorhombic, in which the lattice parameters (particularly the b parameter) are modified by the presence of alloying atoms in solid solution. Further increases in alloy content cause a transition to a thermoelastic, or banded, martensite. The hardness and strength...
Abstract
Uranium is a moderately strong and ductile metal that can be cast, formed, and welded by a variety of standard methods. This article presents an overview of the processing and properties of uranium and uranium alloys with a brief overview of the principal hazards and precautions associated with processing depleted uranium and methods to control mild radioactivity, chemical toxicity, and pyrophoricity. It also describes the classification and heat treatment of uranium and uranium alloys. Furthermore, the article provides graphical representation of the effect of alloy composition, cooling rate, and aging temperature on microstructure, crystal structure, and mechanical properties of uranium and uranium alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... Abstract Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure...
Abstract
Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure vessels, optic-system support structures, prosthetic devices, and applications requiring corrosion resistance and high strength. It explains the effects of alloying elements in titanium alloys as they play an important role in controlling the microstructure and properties and describes the secondary phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys, and advanced titanium alloys (titanium-matrix composites and titanium aluminides).
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003769
EISBN: 978-1-62708-177-1
... without reduction in corrosion resistance. They are the most widely used wrought alloys because of their excellent formability and resistance to corrosion. During solidification of commercial-sized ingots, some of the manganese forms initially orthorhombic Al 6 (FeMn) by eutectic reaction, then cubic Al...
Abstract
This article focuses on the metallography and microstructures of wrought and cast aluminum and aluminum alloys. It describes the role of major alloying elements and their effect on phase formation and the morphologies of constituents formed by liquid-solid and/or solid-state transformations. The article also describes specimen preparation procedures and examines the microstructure of several alloy samples.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003678
EISBN: 978-1-62708-182-5
... Abstract Phosphating is used in the metalworking industry to treat substrates like iron, steel, galvanized steel, aluminum, copper, and magnesium and its alloys. This article provides an overview of the types, uses, and theory of phosphate coatings and their formation. It also discusses...
Abstract
Phosphating is used in the metalworking industry to treat substrates like iron, steel, galvanized steel, aluminum, copper, and magnesium and its alloys. This article provides an overview of the types, uses, and theory of phosphate coatings and their formation. It also discusses the composition of phosphating baths, phosphate layers, and their analysis, as well as the process hardware necessary to realize these treatments. A summary of the different types of phosphate layers is tabulated, and the chemical formulas for a number of different phosphate compounds that are theoretically possible in crystalline phosphate layers are illustrated. The article presents four chemically important phosphating steps, namely, cleaning, activation or conditioning, phosphating, and posttreatment plus standard rinsing. It describes the physical and chemical properties by gravimetric analysis, chemical analysis, structure and morphology, thermal analysis, and alkaline resistance.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
... that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation...
Abstract
Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation temperature and effective carbon content. The partitioning effect of substitutional alloying elements, such as chromium, manganese, and silicon, in pearlitic steel is also illustrated.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
... Abstract This article describes microstructures and microstructure-property relationships in steels. It emphasizes the correlation of microstructure and properties as a function of carbon content and processing in low-alloy steels. The article discusses the iron-carbon phase diagram...
Abstract
This article describes microstructures and microstructure-property relationships in steels. It emphasizes the correlation of microstructure and properties as a function of carbon content and processing in low-alloy steels. The article discusses the iron-carbon phase diagram and the phase transformations that change the structure and properties at varying levels of carbon content. Microstructures described include pearlite, bainite, proeutectoid ferrite and cementite, ferrite-pearlite, and martensite. The article depicts some of the primary processing steps that result in ferrite-pearlite microstructures. It shows the range of hardness levels which may be obtained by tempering at various temperatures as a function of the carbon content of the steel. To reduce the number of processing steps associated with producing quenched and tempered microstructures, new alloying approaches have been developed to produce high-strength microstructures directly during cooling after forging.
1