1-20 of 105 Search Results for

orthopedic application

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... of 18-8-Mo stainless steel, and today the most common implantable stainless steels for orthopedic applications are 316L, 22Cr-13Ni-5Mn, and REX-734 ( Ref 2 ). Table 1 shows the chemistries and designations of some commonly implanted stainless steels. The austenitic microstructure of these stainless...
Book Chapter

By Matthew Donachie
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... Abstract Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
.... additive manufacturing biocompatibility orthopedic implants pure titanium titanium alloys ADDITIVE MANUFACTURING (AM)—or three-dimensional (3D) printing technologies—for biomedical applications is rather different from other engineering components, particularly for biomedical implants...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006906
EISBN: 978-1-62708-392-8
...; rather, what occurred is an improvement in their methods of manufacturing. This article discusses the fundamentals, benefits, manufacturing, and other application examples beyond orthopedics of PSIs. In addition, an outlook of AM in biomedical applications is also covered. additive manufacturing...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... Abstract This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... of Paris did not inhibit wound healing nor provoke a foreign body reaction, and further that it was slowly resorbed over time ( Ref 4 ). In the 1960s, alumina (Al 2 O 3 ) became the first bioinert ceramic used in clinical applications. Alumina was first used in orthopedic applications in 1963 ( Ref 5...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... Orthopedic implants, tissue engineering scaffolds, drug-delivery devices, and prosthetic devices have drastically different intended uses; however, they must satisfy strength capabilities to prevent yielding during application and surgical fixation ( Ref 2 ). For implanted biomedical devices, mechanical...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses key issues related to the simulation of an in vivo environment, service conditions, and data interpretation. These include the frequency of dynamic loading, electrolyte chemistry, applicable loading modes...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... Abstract Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
... in the Design of Titanium Alloys for Orthopedic Applications , Expert Rev. Med. Dev. , Vol 2 ( No. 6 ), 2005 , p 741 – 748 10.1586/17434440.2.6.741 82. Afonso C.R.M. , Aleixo G.T. , Ramirez A.J. , and Caram R. , Influence of Cooling Rate on Microstructure of Ti-Nb Alloy...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006902
EISBN: 978-1-62708-392-8
... be a proper alternative for fabricating patient-specific splints, which are typically produced by the traditional casting method. However, advancing the biocompatible materials suitable for 3D printing technologies may enhance the application of these technologies in the orthopedics field. Dental...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... and in vivo corrosion resistance are most suitable for orthopedic implant applications, because they are subjected to significant musculoskeletal forces and aggressive biochemical environments. A significant concern regarding the use of metals for orthopedic and cardiovascular implants...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... used for various applications. Lastly, current challenges in tissue engineering are discussed. biomaterials bioprinting bone tissue engineering 3D printing ORTHOPEDIC TRAUMA was suffered by more than 7 million patients in the United States from 2013 to 2014, and approximately 650,000 bone...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004206
EISBN: 978-1-62708-184-9
... of cobalt, nickel, and iron have been used. More recently, the use of titanium has increased dramatically in dental applications such as dental implants. Metal alloys have been used in orthopedic applications in greatest amounts related to fracture fixation devices and total joint arthroplasties. Alloys...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... and continuous casting process. It provides information on castability and quality of the casted alloys. The article details the postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys. cast cobalt alloys castability...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... in the manufacture of injection-molded plastics. Titanium and cobalt-chromium alloy orthopedic prostheses for hip and knee joints are among the most successful commercial applications for ion-implantation components for wear resistance. Research and development applications for ion implantation Table 2...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
...-application-ready structural fabrications. In recent work, PBF-EB/M has shown promising metal scaffolds for biomedical applications. The technology provided long-term biological fixation and improved durability of orthopedic implants in load-bearing conditions. This is due to the ability to print...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006055
EISBN: 978-1-62708-175-7
.... Opportunities for MIM in the orthopedic market sector are currently limited due to a combination of several product requirements other than shape complexity that conflict with MIM attributes. The biggest obstacle is the very low annual production volume requirements per application. Many applications require...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005741
EISBN: 978-1-62708-171-9
... but was limited to three-dimensional porous surfaces ( Ref 3 ). Thermal spray coating for wear debris reduction is a relatively new technology application that has emerged in recent years and has not been commercialized yet. During the 1980s to 2000s, the orthopaedic industry found that a primary cause...