1-20 of 108 Search Results for

orthopaedic coatings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005741
EISBN: 978-1-62708-171-9
... cermet coatings. chromium carbide chromium oxide orthopaedic joints substrate selection thermal spray coating titanium THERMAL SPRAY COATINGS have been used for biomedical devices for decades, primarily in the orthopaedic and dental fields. The purpose of this article is to give readers...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005668
EISBN: 978-1-62708-198-6
... discusses various in vivo environmental conditions in tribological tests. Some typical examples of biomaterials testing are also provided. biomaterials electrical contact resistance friction coefficient linear reciprocating motion orthopaedic coatings pin-on-disk method tribocorrosion...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials. biomedical orthopedic alloys cobalt-base alloys implantable surgical devices metallography microstructure porous coatings quality control stainless steels titanium...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005656
EISBN: 978-1-62708-198-6
... Abstract Porous coatings are used in the field of joint replacement, particularly in cementless total hip/knee arthroplasty. This article reviews the offerings and biomaterial properties in orthopedic surgery for the contemporary class of highly porous metals. It describes the traditional...
Image
Published: 01 December 2004
Fig. 21 A scanning electron microscope image of a commercially pure titanium plasma spray coating on the surface of a Ti-6Al-4V orthopedic device More
Image
Published: 01 June 2012
Fig. 13 High-powered micrograph of Stiktite, a porous titanium coating offered on a variety of orthopaedic implants. Courtesy of Smith and Nephew, Memphis, TN More
Book Chapter

By Matthew Donachie
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
...) is applied to raise the temperature to above the transition temperature; the plate reverts to its original dimensions, contracting and pulling the fractured surfaces together. Coatings for Use on Implants One of the great debates in orthopedic implant surgery has been over the question of attachment...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... Abstract Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... Abstract This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article...
Book Chapter

By Sam Nasser
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005684
EISBN: 978-1-62708-198-6
... with its ductility and relative ease of fabrication into complex shapes, made tantalum attractive for surgical applications beginning in the first half of the 20th century. In 1924, the American College of Surgeons boldly declared tantalum “the best metal for orthopaedic implants based on biocompatibility...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Abstract This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005746
EISBN: 978-1-62708-171-9
... Velocity Oxy-Fuel Coating of Hydroxyapatite for Orthopaedic Applications S. Hasan and J. Stokes International Thermal Spray Conference and Exposition 2010 2010 Cavitation Erosion Properties and Fracture Morphology of Thermal Spray Coatings A. Kanno, T. Takabatake, Y. Namba, K. Tani, S. Uematsu, S...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... Research and development applications for ion implantation Surface properties modified Substrates studied Ions species used Comments Wear Steels, WC, Ti, Co/Cr alloys, TiN coatings, electroplated Cr N, C 10–20 at. % ≥10 17 ions/cm 2 Ti,Co/Cr alloys largest use commercially in orthopedic...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006885
EISBN: 978-1-62708-392-8
... bioceramic coatings/composites on implant surfaces, with particular examples related to biomedical magnesium and titanium alloys. It then provides a review of the processes involved in DED of biomedical stainless steels, Co-Cr-Mo alloys, and biomedical titanium alloys. Further, the article covers novel...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... Abstract Total joint replacement in orthopedic surgery can be achieved by excision, interposition, and replacement arthroplasty. This article details the most common materials used in total replacement synovial joints: metals, ceramics, and ultrahigh molecular weight polyethylene (UHMWPE...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... Abstract Implant debris is known to cause local inflammation, local osteolysis, and, in some cases, local and systemic hypersensitivity. The debris can be stainless steel, cobalt alloy, and titanium alloy, and soluble debris obtained due to wear from all orthopedic implants. This article...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... coatings continuous casting gas turbines heat treatment hot isostatic pressing microstructure orthopedic implants phases physical metallurgy crystallography foundry methods argon-oxygen decarburization cobalt alloy castings wear-resistant alloys corrosion-resistant alloys COBALT-BASE...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
..., a cobalt-chromium alloy for an orthopaedic bone screw also was introduced ( Ref 2 ) by Alvin Strock, a Boston oral and maxillofacial surgeon. The next year, Bothe et al. ( Ref 3 ) demonstrated that titanium, stainless steel, and Vitallium implants were tolerated in cat femurs from an in vivo study...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... as a coating on orthopaedic implants to initiate bone attachment ( Ref 6 ) or in association with bone morphogenic protein to induce bone formation in bone defects, such as those produced by removal of tumors and in dental applications for the restoration of the alveolar ridge. To improve its wear...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... microstructure orthopaedic applications solidification strengthening wear wrought cobalt alloys wrought cobalt-chromium-molybdenum alloys COBALT-BASE ALLOYS with significant refractory metal element additions as well as small amounts of nickel, carbon, and other minor constituents were developed...