Skip Nav Destination
Close Modal
Search Results for
orthogonal cutting model
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 108 Search Results for
orthogonal cutting model
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1989
Fig. 4 Schematics of orthogonal metal cutting mechanics. (a) Orthogonal model. t , uncut chip thickness (feed or depth or cut); t c , chip thickness; ϕ, shear angle; α, back rake angle; γ, clearance angle; θ, edge angle [θ = 90 − (α + γ)]. (b) Velocity triangle. V s , shear velocity; V
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002117
EISBN: 978-1-62708-188-7
... the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation. cutting deformation machining metal deformation orthogonal cutting model shear deformation THE BASIC MECHANISM...
Abstract
The relative motion between the tool and the workpiece during cutting compresses the work material near the tool and induces a shear deformation that forms the chip. This article discusses the fundamental nature of the deformation process associated with machining. It describes the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... is reached. When steady-state tool temperature is established, the transient analysis is completed to analyze exit behavior. Two-Dimensional versus Three-Dimensional Analysis Two-dimensional (2-D) plane-strain or plane-stress finite-element models are appropriate for orthogonal cutting simulation...
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002118
EISBN: 978-1-62708-188-7
... in turning, drilling, and milling operations. The article concludes with a section on the factors affecting specific power. cutting tools drilling machining metals milling nonuniform stress normal stress orthogonal machining shear stress turning THE MODELING AND ANALYSIS of chip formation...
Abstract
This article describes the basic concepts of the complex factors that influence the forces, power, and stresses in machining. It provides an overview of the models of orthogonal (that is, two force) machining of metals as they are useful for understanding the basic mechanics of machining and can be extended for modeling of the production processes. The article discusses stresses on the shear plane, stresses distributions on the rake face, uniform stresses on the rake face, and nonuniform stress distributions on the rake face. It also examines the specific power consumption in turning, drilling, and milling operations. The article concludes with a section on the factors affecting specific power.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006363
EISBN: 978-1-62708-192-4
... remains at the tool-chip interface, rather than conducting away in the chip. This is a primary cause for the high wear rates and low machinability of titanium alloys relative to aluminum alloys. The chip temperature results shown in Fig. 10 , 11 , 12 , 13 are for an orthogonal cutting model...
Abstract
Machining tribology poses a significant challenge due to the multiple parameters that must be simultaneously considered to arrive at a cost-minimized solution in production. This article provides information required to make informed decisions about machining parameters. It describes the relationships between machining parameters, workpiece material properties, cutting forces, and the corresponding temperature field in the chip. The article provides information on tool life, with an empirical model, common wear features, and the relationship between tool life and machining cost. The cutting fluids and their effect on tool life are also discussed. The article discusses machining process dynamics and corresponding vibrations. It contains a table that provides a summary of high-pressure coolant research.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002435
EISBN: 978-1-62708-194-8
... experiment, cutting the time and effort that have to be expended to a mere fraction of former levels. Orthogonal Arrays The concept of the orthogonal array isn't new: The Swiss mathematician Leonhard Euler did considerable research on them in the 1700s. However, orthogonal arrays were little more than...
Abstract
This article addresses problems, such as “in spec” dilemma and on-target key, associated with traditional approaches to quality. It discusses major robust design techniques, tools, and concepts, such as quality loss function, parameter design, tolerance design, signal-to-noise ratio, technology development, and orthogonal arrays.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002120
EISBN: 978-1-62708-188-7
..., and applying the results. cutting tools modeling steady-state mechanism stress Taylor's tool life equation tertiary wear tool wear wear surfaces CUTTING TOOLS WEAR because normal loads on the wear surfaces are high and the cutting chips and workpiece that apply these loads are moving rapidly...
Abstract
Cutting tool wear is a production management problem for manufacturing industries. It occurs along the cutting edge and on adjacent surfaces. This article describes steady-state wear mechanisms, tertiary wear mechanisms, and tool replacement. It provides information on tool failure and its consequences. The article details the modeling of tool wear by using the Taylor's tool life equation. The article concludes with information on the requirements of a successful tool life testing program: the test plan objective, designing the test, conducting the test, analyzing the results, and applying the results.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002175
EISBN: 978-1-62708-188-7
... and is the number of teeth on the cutter in milling. The main cutting force component is typically modeled as being proportional to the depth of cut and the feed: (Eq 3) F = K S a f u where K S is the specific cutting force coefficient, and the exponent, u , is typically in the range 0.6...
Abstract
This article discusses the types of adaptive control (AC) systems for metal cutting according to the AC strategies used. These include adaptive control with optimization (ACO), adaptive control with constraints (ACC), and geometric adaptive control (GAC). The article details the milling and grinding systems based on the ACO strategy. It reviews the fundamentals of ACC systems followed by a description of a particular ACC system for a turning operation. The article also describes the basic characteristics of GAC systems and presents a particular GAC system for the turning of cylindrical parts. It examines the issues in the AC systems such as tool wear/breakage. Trends in the AC systems such as variable-gain ACC systems and integration of adaptive control into CAD/CAM/CIM systems are also discussed.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... with information on the applications of high-speed machining. aluminum alloys analytical modeling continuum mechanics cutting tools high-speed machining steel superalloys titanium alloys HIGH-SPEED MACHINING is a relative term from a materials viewpoint because of the vastly different speeds...
Abstract
This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article describes the cutting tool systems for aluminum alloys, steel, superalloys, and titanium alloys and provides an overview of the alternative cutting tool geometries for increasing tool life. It highlights the factors considered by companies planning to employ high-speed machining systems and concludes with information on the applications of high-speed machining.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
... the Oyane model ( Ref 32 , 33 ). Both two-dimensional transient models of orthogonal shearing and three-dimensional stationary models of guillotining and slitting were developed in this work. The steady-state conditions were estimated from the initial geometry, including a crack front. The position...
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005537
EISBN: 978-1-62708-197-9
... for obtaining machining-induced residual stresses, including detailed finite-element analysis of the cutting process, the simple fast-acting mechanistic model, and the semi-empirical linear stress model. The article concludes with information on the modeling benefits and implementation of modeling...
Abstract
Modeling will help reduce machining problems and thereby enable more rapid introduction of high-performance materials and components. This article discusses the technical needs of aircraft engine and airframe structural components and modeling of heat-treat-induced residual stress by finite-element residual-stress analysis. It describes the two-dimensional (2-D) and three-dimensional (3-D) procedures involved in finite-element residual-stress analysis. The article deals with the 2-D and 3-D machining distortion validation on engine-disk-type components. It describes methods for obtaining machining-induced residual stresses, including detailed finite-element analysis of the cutting process, the simple fast-acting mechanistic model, and the semi-empirical linear stress model. The article concludes with information on the modeling benefits and implementation of modeling in a production environment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003040
EISBN: 978-1-62708-200-6
..., multiple track braiding, pin braiding, or three-dimensional braiding can be used to fabricate structures in an integrated manner. The movement of the carriers can follow a serpentine track pattern or orthogonal track pattern by means of a positive guiding mechanism and/or Jacquard-controlled mechanism...
Abstract
Braiding is a textile process that is known for its simplicity and versatility. Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the braiding process and the mechanical properties of two-dimensional and three-dimensional braiding.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
...× Rolling-Contact Fatigue Testing The aforementioned complexity in underpinning the exact failure mechanism has led to simplified experimental contact model configurations (RCF tribometers), which have been extensively used to investigate the influence of changes in bearing materials, residual stress...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003394
EISBN: 978-1-62708-195-5
...-pattern generation also properly accounts for changes in surface area and density that occur when woven materials conform to compound-curvature shapes. The flat patterns are usually stored within the CAD model for output to ply nesting or cutting machines. Fig. 8 Flat patterns as a function...
Abstract
Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic components, such as laminate and ply, of continuous fiber composite. The article provides information on the core sample and ply analysis. It details producibility, flat-pattern evaluations, and laminate surface offset. The article discusses various interfaces, such as the structural analysis interface, the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006033
EISBN: 978-1-62708-175-7
... Abstract This article discusses continuum modeling, which is the most relevant approach in modeling grain growth, densification, and deformation during sintering. Continuum plasticity models are frequently used to describe the mechanical response of metal powders during compaction. The article...
Abstract
This article discusses continuum modeling, which is the most relevant approach in modeling grain growth, densification, and deformation during sintering. Continuum plasticity models are frequently used to describe the mechanical response of metal powders during compaction. The article illustrates the typical procedure for computer simulation for press and sinter process. It describes the procedure to obtain the material properties based on the generalized Shima-Oyane model. The article presents a wide variety of tests, accounting for data on the grain growth, densification, and distortion where these data help in the development of a constitutive model for sintering simulation. Finally, the article provides information on the simulation approaches used to optimize die compaction and sintering.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005502
EISBN: 978-1-62708-197-9
... Abstract This article presents the governing equations and methodologies to model the press and sinter powder metallurgy, including continuum, micromechanical, multiparticle, and molecular dynamics approaches. It describes the constitutive relation for compaction and sintering. The article...
Abstract
This article presents the governing equations and methodologies to model the press and sinter powder metallurgy, including continuum, micromechanical, multiparticle, and molecular dynamics approaches. It describes the constitutive relation for compaction and sintering. The article discusses the experimental determination of material properties and simulation verification for compaction and sintering. It reviews the use of modeling and simulation of press and sinter powder metallurgy, including gravitational distorting in sintering, compaction optimization, sintering optimization, and coupled press and sinter optimization.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006948
EISBN: 978-1-62708-439-0
... in the design process to take AM process-related considerations into account before the computer-aided design (CAD) model is finalized. Software tools that are used to simulate the fabrication process and optimize and refine support structures, part orientation, part packing, and arrangement of parts include...
Abstract
Additive manufacturing (AM) offers expansive design freedoms for realizing parts that are more complex and customized than their conventionally fabricated counterparts, but all AM technologies impose restrictions on buildable geometries and features. Design rules capture those restrictions in the form of best practices to successfully design for AM. This article discusses how design rules can potentially support and accelerate the process of developing part geometry for AM. The discussion provides examples of design rules that are independent of any specific AM process and then discusses design rules specific to particular AM processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
... of each lamina, where planes perpendicular to the fibers remain plane. Fig. 8 shows that there is a difference between the J 1 values at these two locations, so it is important to use the appropriate values. Figure 8 shows only one end of the model; the front face is actually a section cut through...
Abstract
This article presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals and attributes of this method. The article then addresses the characterization of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix fails first, either by intent, by design error, or because of impact damage. The state of the modeling propagation and arrest of matrix damage follows. Comparisons of this physics-based approach are then made to empirically based failure theories.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006393
EISBN: 978-1-62708-192-4
... life model is rooted in Eq 2 , other fatigue models make use of the depth of principal maximum shear or von Mises stress, σ vM ( Ref 43 , 44 ). These stresses, relative to the orthogonal shear stress, occur with differing magnitudes (e.g., τ max /σ Htz = 0.3 and σ vM /σ Htz = 0.7) and at differing...
Abstract
This article discusses the composition, properties and applications of bearing steels. It focuses on the typical wear modes that rolling-element bearings experience: contact fatigue wear, abrasive wear, adhesive wear, and corrosive wear. The article provides information on reliability factor and ABMA and ISO environmental factors.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003361
EISBN: 978-1-62708-195-5
... a serpentine track pattern or orthogonal track pattern by means of a positive guiding mechanism and/or Jacquard- controlled mechanism (lace braiding). Jacquard braiding uses a mechanism that enables connected groups of yarns to braid different patterns simultaneously. Various criteria and braiding...
Abstract
Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the classifications of braiding such as two-dimensional braiding and three-dimensional braiding. It presents the governing equations for computer-controlled braiding in a table. The article lists the applications of braided fabrics and composites. It discusses the formation, structure, and properties of two-dimensional braid composites and three-dimensional braid composites: the damage tolerance and the impact damage limitation.
1