Skip Nav Destination
Close Modal
By
Spiro Megremis, Clifton M. Carey
By
Cathy Tkaczyk, Maryam Tabrizian
By
Matt Bulger, Paul Hauck
By
A. Rabinkin
By
Hideyuki Kanematsu, Dana M. Barry, Rafiqul Noorani, Paul McGrath
By
Amit Bandyopadhyay, Jose D. Avila, Indranath Mitra, Susmita Bose
By
Michael D. Roach, Randall S. Williamson, Joseph A. Thomas
By
Darel E. Hodgson, Ming H. Wu, Robert J. Biermann
Search Results for
orthodontic wires
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37
Search Results for orthodontic wires
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Anodic polarization at 0.03 V/min of four orthodontic wires in artificial s...
Available to PurchasePublished: 01 January 2006
Fig. 35 Anodic polarization at 0.03 V/min of four orthodontic wires in artificial saliva. Source: Ref 192
More
Book Chapter
Friction and Wear of Dental Materials
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
..., dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal instruments, and orthodontic wires. The article describes the correlations of properties such as the hardness, fracture toughness, and wear. It provides information on wear...
Abstract
This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal instruments, and orthodontic wires. The article describes the correlations of properties such as the hardness, fracture toughness, and wear. It provides information on wear mechanism such as the sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Book Chapter
Corrosion and Tarnish of Dental Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004209
EISBN: 978-1-62708-184-9
..., and titanium and its alloys. Wrought orthodontic wires are composed of stainless steel, cobalt-chromium-nickel, nickel-titanium, and β-titanium alloys. Silver- and gold-alloy solders are used for the joining of components. High-temperature brazing alloys are used for the joining of a number of high fusing...
Abstract
This article describes dental alloy compositions and its properties. It discusses the safety and efficacy considerations of dental alloy devices. The article defines and compares interstitial fluid and oral fluid environments. Artificial solutions developed for the testing and evaluation of dental materials are summarized. The article examines the effects of restoration contact on electrochemical parameters and reviews the concentration cells developed by dental alloy-environment electrochemical reactions. The composition and characterization of biofilms, corrosion products, and other debris that deposit on dental material surfaces are discussed. The article evaluates the types of alloys available for dental applications, including direct filling alloys, crown and bridge alloys, partial denture alloys, porcelain fused to metal alloys, wrought wire alloys, soldering alloys, and implant alloys. The effects of composition and microstructure on the corrosion of each alloy group are also discussed. The article concludes with information on the tarnishing and corrosion behavior of these alloys.
Book Chapter
Biocompatibility, Metals Ions, and Corrosion Products
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
... Steel Wires , Eur. J. Orthod. , Vol 27 ( No. 6 ), Dec 2005 , p 533 – 540 24. Ortiz J.A. , Fernández E. , Vicente A. , Calvo J.L. , and Ortiz C. , Metallic Ions Released from Stainless Steel, Nickel-Free, and Titanium Orthodontic Alloys: Toxicity and DNA Damage...
Abstract
This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Book Chapter
Applications for Metal Powder Injection Molding
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006055
EISBN: 978-1-62708-175-7
... for tooling orthodontic dental components can be much higher than for larger parts, because creating extremely small details requires sophisticated machining and a great deal of skill. Many MIM manufacturers use a hot runner system, which helps prevent MIM feedstock from cooling too quickly and freezing...
Abstract
Metal injection molding (MIM) is a metalworking technology that has its origins as a commercial technology only dating back to the early 1970s. This article explores why the MIM is the preferred solution for many fabricated components. It illustrates the MIM components required for different end-use markets such as electronics and telecommunications, medical, automotive, power hand tools, industries, and firearms.
Book Chapter
Precious Metals
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001087
EISBN: 978-1-62708-162-7
..., and tabulates the industrial applications of precious metals. It provides information on the commercial forms (wire, rod, sheet, strip, ribbon, and foil) and uses of precious metals, including semifinished products, precious metal powders, industrial uses, coatings, and jewelry. commercial forms...
Abstract
Precious metals are of inestimable value to modern civilization. This article discusses the resources and consumption, trade practices, and special properties of precious metals and its alloys, including ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold, and tabulates the industrial applications of precious metals. It provides information on the commercial forms (wire, rod, sheet, strip, ribbon, and foil) and uses of precious metals, including semifinished products, precious metal powders, industrial uses, coatings, and jewelry.
Book Chapter
Selection Criteria for Brazing and Soldering Consumables
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... (brazing filler metals); and rosin-core wire. Conventional paste forms of joining alloys, which consist of a filler-metal powder, fluxing agent, and a binder/solvent, are applied at externally accessible locations of the clearance between the base-material components. This practice requires substantial...
Abstract
This article focuses on the various criteria considered in the selection of product forms, joint types, solders, and filler metals for brazing and soldering of base material components.
Book Chapter
Medical Applications of Vat Polymerization
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
... to market. Practical applications of additive manufacturing have made progress for products used outside the body. Mouthpieces for orthodontics ( Ref 60 – 64 ) and surgical guides for surgical operations in the oral cavity ( Ref 65 – 69 ) are often produced by additive manufacturing. A promising example...
Abstract
Of the seven additive manufacturing (AM) processes, this article focuses on the vat photopolymerization, or simply vat polymerization, process, while briefly discussing the other six AM processes. Vat polymerization and its characteristics, AM applications in medical fields, and the regulatory challenges of vat polymerization-based bioprinting are presented.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... in orthognathic surgery. Cobalt alloy wires formed by metal drawing have been used in orthodontics, where their high yield strength as a result of mechanical working provides the desired springback characteristics for tooth repositioning. However, their use for this application has been displaced, for the most...
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Book Chapter
Shape Memory Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003160
EISBN: 978-1-62708-199-3
... exploited in the field of orthodontics (arch wires) where a constant force enhances tooth movement with greater patient comfort. Eyeglass frames represent another important superelastic application. The martensitic phase of NiTi has some unique properties that have made it an ideal material for many...
Abstract
The term shape memory alloys (SMAs) refers to the group of metallic materials that demonstrate the ability to return to some previously defined shape or size when subjected to the appropriate thermal procedure. Materials that exhibit shape memory only upon heating are referred to as having a one-way shape memory. Some materials also undergo a change in shape upon recooling. These materials have a two-way shape memory. This article discusses the general characteristics of SMAs by using typical transformation versus temperature curve. It describes the processing, applications and properties (mechanical and physical) of commercial SMA alloys, namely nickel-titanium alloys and copper-base alloys.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... flexibility, and absorb or store energy. Springs are made in a variety of shapes and sizes, ranging from delicate hairsprings for watches to massive buffer springs for railroad equipment. In general, springs may be classified as wire springs, flat springs, or special-shaped springs, with several variations...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... in the early 1970s ( Ref 10 ). The first application of Nitinol in medicine was as superelastic orthodontic archwires, which were sold extensively in the late 1970s. The first “for-sale,” agency-approved medical device was likely the Homer Mammalok, produced by Mitek Corporation ( Ref 11 ), and the first...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book Chapter
Medical Applications of Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
...; stainless steel Total joint prostheses Replacement of total joints with metal and plastic components (shoulder, hip, knee, ankle, and great toe): humeral, femoral (hip and knee), talus, and metalarsal components; type 316 L stainless steel Wires Internal tension band wiring of bone fragments...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Book Chapter
Additive Manufacturing of Cobalt-Chromium Alloy Biomedical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
... BioDur CCM Plus Joint replacements F1537-20 wrought 9 Fixation devices Co-20Cr-15W-10Ni F90-14 wrought 6 Haynes-Stellite 21 Surgical implant applications F1091-20 wrought 10 L-605 Vascular stents, heart valves, surgical fixation wires Co-35Ni-20Cr-10Mo F562-13 wrought 5...
Abstract
This article discusses some of the additive manufacturing (AM) based fabrication of alloys and their respective mechanical, electrochemical, and in vivo performance. Firstly, it briefly discusses the three AM techniques that are most commonly used in the fabrication of metallic biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys in terms of the material and 3D printing fabrication. Discussion on the biological response as a function of direct cellular activity on the surface of CoCr alloys in static conditions (in vitro), in dynamic physiological conditions (in vivo), and in computer-simulated conditions (in silico) are further discussed in detail. Finally, the article provides information on the qualification and certification of AM-processed medical devices.
Book Chapter
Noble and Precious Metal Applications in Biomaterials with Emphasis on Dentistry
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005670
EISBN: 978-1-62708-198-6
... to the Egyptian practice of splinting teeth, as documented by a specimen found in a tomb near Gizeh that dates to 2500 B.C., where two molars were fastened with heavy gold wire ( Ref 22 , Ref 23 , Ref 24 ). There is some thought that these teeth were inserted postmortem during the mummification process...
Abstract
This article focuses on the use of noble and precious metals for biomedical applications. These include gold, platinum, palladium, ruthenium, rhodium, iridium, and osmium. The physical and mechanical properties of noble and precious metals are presented in tables. A brief discussion on the ancient history of noble and precious metal use in dentistry is provided. The article discusses the use of direct gold dental filling materials, direct silver dental filling materials, traditional amalgam alloys, high-copper amalgam alloys, and gallium alloys in biomedical applications. It also provides information on gold coatings and iridium oxide coatings for stents.
Book Chapter
Shape Memory Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
... resists permanent deformation if bent severely. Arch wires for orthodontic correction using Ni-Ti have been used for many years to give large rapid movement of teeth. The properties of the Ni-Ti alloys, particularly, indicate their probable greater use in biomedical applications. The materials...
Abstract
This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize them using differential scanning calorimeter (DSC) techniques as well as other methods. The article examines the most common shape memory alloys, namely, nickel-titanium and copper-base SMAs, and provides information on their respective properties.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
..., titanium alloys for posts on which to fix crowns or bridges, and nickel-chromium alloys and cobalt-chromium alloys for crowns and bridgework, partial dentures, or as the basis for porcelain-coated alloy teeth. Stainless steel and a few other alloys find use as wires and sheet in orthodontics. Ceramics...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Book Chapter
Brazing
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... Table 2 Major classes of brazing filler metals No. Alloy family and type AWS designation Forms Base materials joined Major applications 1 Al-Si, eutectic BAlSi Preforms, wire, rods, foil, powder, RS foil (a) Aluminum and aluminum alloys, steel to aluminum and aluminum to beryllium...
Abstract
This article provides information about the selection of brazing processes and filler metals and describes the brazing (heating) methods, including manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing and specialized brazing processes such as diffusion and exothermic brazing. The article explains joint design, filler materials, fuel gases, equipment, and fluxes in the brazing methods. The article also describes the brazing of steels, stainless steels, cast irons, heat-resistant alloys, aluminum alloys, copper and copper alloys, and titanium and titanium alloys.
Book Chapter
Final Shaping and Surface Finishing of Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
1