Skip Nav Destination
Close Modal
By
Ruban Whenish, Pearlin Hameed, Revathi Alexander, Joseph Nathanael, Geetha Manivasagam
By
Gabriele Maria Fortunato, Amedeo Franco Bonatti, Simone Micalizzi, Irene Chiesa, Elisa Batoni ...
By
Caroline A. Murphy, Cesar R. Alcala-Orozco, Alessia Longoni, Tim B. F. Woodfield, Khoon S. Lim
Search Results for
organ-printing applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 351 Search Results for
organ-printing applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
..., showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications. biomaterials extrusion printing inkjet printing laser-induced forward transfer printing organ-printing applications process simulations tissue-printing applications GREAT PROGRESS has...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser...
Abstract
Microvalve jetting, with its advantages of low cost, ease of operation, high printing speed, and ability to process living cells with high viability, has been primarily used for fabricating high-throughput drug-screening models, in vitro cellular structures for fundamental cell biology research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser-assisted jetting. The parameters covered include nozzle size (nozzle inner diameter), pneumatic pressure, valve-opening time, and printing speed of microvalve jetting. Subsequently, the article discusses biomaterials for microvalve jetting in terms of biomaterial definition, required properties for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... and a decrease in printer time ( Ref 103 ). Future Perspective The field of tissue and organ regeneration holds much promise for additive manufacturing in the scope of extrusion printing. One of the promising potential directions of additive-manufacturing-based extrusion printing is bioprinting of new...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
... the way up to printing of microorganoids and organs. Bioprinting has positively impacted a plethora of applications in the field of biomedicine, which has helped fields such as regenerative medicine, disease modeling, tissue engineering, pharmaceutics, drug delivery, and food production ( Ref 1 – 5...
Abstract
Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle, as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing, flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006565
EISBN: 978-1-62708-290-7
... In many applications, the material to be printed is only available in powder form; to direct write a pattern of these powders, traditional techniques such as inkjetting have limited success due to nozzle clogging. With LIFT, laser transfer of metals or ceramic powders mixed with an organic solvent...
Abstract
This article discusses the basic operating principles, industrial applications, and advantages as well as the parameters influencing the process of laser-induced forward transfer (LIFT) of solid materials, liquid materials, laser-absorbing layers, intact structures, and metallic 3D microstructures in additive manufacturing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
.... For example, biomaterials incorporated into orthopedic or dental applications need to have higher mechanical stiffness along with slower and prolonged biodegradation rates. In contrast, for dermal or other visceral organ applications, the adopted biomaterial should be soft, flexible, and have relatively fast...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006883
EISBN: 978-1-62708-392-8
... Abstract According to International Organization for Standardization (ISO)/ASTM International 52900, additive manufacturing (AM) can be classified into material extrusion, material jetting, vat photo polymerization, binder jetting, sheet lamination, powder-bed fusion (PBF), and directed-energy...
Abstract
According to International Organization for Standardization (ISO)/ASTM International 52900, additive manufacturing (AM) can be classified into material extrusion, material jetting, vat photo polymerization, binder jetting, sheet lamination, powder-bed fusion (PBF), and directed-energy deposition. This article discusses the processes involved in polymer powder 3D printing using laser fusion/ sintering and fusing agents and energy, as well as the thermally fused PBF. It provides information on polymer powder parameters and modeling, the powder-handling system, powder characterization, the flowability of powder feedstock, and polymer part characteristics. The article describes the types of polymers in PBF, the processes involved in powder recycling, and the prospects of PBF in AM. In addition, the biomedical application of polyether ether ketone (PEEK) is also covered.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... structures through processes involving organic solvents, high temperatures, or cross-linking agents. These conditions are not compatible with biological applications; therefore, the main challenge of the 3D bioprinting field is to identify and print biopolymers, which are not only compatible...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006863
EISBN: 978-1-62708-392-8
... bioprinting, according to ASTM International standard F 2792 and International Organization for Standardization (ISO) standard 17296-2:2015 (ISO 2015). Fig. 12 Classification of three-dimensional (3D) printing Material jetting bioprinting is a process in which droplets of materials...
Abstract
Of the seven additive manufacturing (AM) processes, this article focuses on the vat photopolymerization, or simply vat polymerization, process, while briefly discussing the other six AM processes. Vat polymerization and its characteristics, AM applications in medical fields, and the regulatory challenges of vat polymerization-based bioprinting are presented.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
... to form artificial organizations. Biological scaffolds are important for tissue engineering and are widely used for clinical treatments. Raw materials, such as cellulose, collagen, and polylactide-glycolic acid copolymer, have been used to print scaffolds. In addition, cells can be “gifted...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006547
EISBN: 978-1-62708-290-7
.... 769–779 86 Sorting of Large-Diameter Semiconducting carbon Nanotube and Printed Flexible Driving Circuit for Organic Light Emitting Diode (OLED) Xu, W.; Zhao, J.; Qian, L.; Nie, S.; Cui, Z. 2014 Nanoscale , Vol 6 (No. 3), p 1589–1595 53 78 Emerging Carbon and Post-Carbon nanomaterial...
Abstract
Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects were the most commonly mentioned within the included articles and were identified as being the most relevant for a comprehensive performance assessment: printing process, line width, overspray, complex surface compatibility, diversity of printable materials, and deposition rate. This article is an account of the results of this comparison study in terms of printing capabilities, ink requirements, and economic aspects.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
... , 30 ), freeze-form extrusion fabrication (FEF) ( Ref 5 , 21 , 31 ), and thermoplastic 3D printing (T3DP) ( Ref 32 ). EFF ( Ref 27 ) was the first technique that used the extrusion of organic-based ceramic slurries to produce 3D ceramic components. Slurries of alumina powders in liquid acrylic...
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006902
EISBN: 978-1-62708-392-8
... connection that exists between the operated organ and its surroundings. Furdová et al. ( Ref 26 ) 3D printed a prototype of an eye globe with a tumorous mass for stereotactic radiosurgical procedure planning. The 3D model of the eye was created using the CT/MRI data. The prototype was fabricated from PLA...
Abstract
Additive manufacturing (AM), or three-dimensional (3D) printing, is a class of manufacturing processes that create the desired geometries of an object, or an assembly of objects, layer by layer or volumetrically. AM has been used extensively for manufacturing medical devices, due to its versatility to satisfy the specific needs of an intended medical field for the product/device. This article provides a comprehensive review of AM in medical devices by the medical specialty panels of the Food and Drug Administration (FDA) Code of Federal Regulations, Parts 862 to 892, including anesthesiology, ear and nose, general hospital, ophthalmic, plastic surgery, radiology, cardiovascular, orthopedic, dental, neurology, gynecology, obstetrics, physical medicine, urology, toxicology, and pathology. It is classified under these panels, and critical reviews and future outlooks are provided. The application of AM to fabricate medical devices in each panel is reviewed; lastly, a comparison is provided to reveal relevant gaps in each medical field.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... ( Ref 29 ). This approach demonstrated the possibility to print more complex structures with a low-viscosity ADA/gelatin system without the need to add further amendments to the bioink itself ( Ref 29 ). Next to CMC, other organic agents have been added to alginate/gelatin hydrogels to improve...
Abstract
This article discusses alginate/gelatin-based bioinks in 3D bioprinting applications, providing a summary of the most relevant previous work in the field. It presents advanced compositions to enhance functionality and/or optimize hydrogels for 3D bioprinting. The article discusses advanced printing techniques for alginate/gelatin-based bioinks.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006898
EISBN: 978-1-62708-392-8
... of electrical charges in some crystals and also in some organic parts, such as deoxyribonucleic acid (DNA), proteins, and bones ( Ref 21 ), due to the application of external mechanical pressure and latent heat. There are various forms of piezoelectric materials. Mainly, they can be classified into two...
Abstract
Additive manufacturing (AM) has been growing as a significant research interest in academic and industry research communities. This article presents flexible and biocompatible energy-harvesting devices using AM technology. First, it discusses material selection for achieving piezoelectricity and triboelectricity. Then, the article highlights the structures of energy harvesters and describes their working mechanisms. Next, it covers the additively manufactured implantable piezoelectric and triboelectric energy harvesters. Further, the article describes the 3D-printed wearable energy harvesters as well as their applications. An overview of additively manufactured self-powered sensors is highlighted. Finally, the article discusses the issues for 3D-printed energy harvesters and their roadmap.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006890
EISBN: 978-1-62708-392-8
.... A scaffold is a three-dimensional (3D) structure capable of supporting cell adhesion, maturation, and proliferation, allowing the regeneration in vitro of functional tissues and organs, especially for regenerative medicine applications, among others ( Ref 1 ). Bioprinting allows the controlled, layer...
Abstract
Bioprinting has been advancing in the field of tissue engineering as the process for fabricating scaffolds, making use of additive manufacturing technologies. In situ bioprinting (also termed intraoperative bioprinting) is a promising solution to address the limitations of conventional bioprinting approaches. This article discusses the main approaches and technologies for in situ bioprinting. It provides a brief overview of the bioprinting pipeline, highlighting possible solutions to improve currently used approaches. Additionally, case studies of in situ bioprinting are provided and in situ bioprinting future perspectives are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006861
EISBN: 978-1-62708-392-8
...) for 3 h in pure Ar atmosphere. Bone tissue engineering application with anticorrosion properties (in vitro) for enhanced durability 20 Fe-30%Mn powder printed using water-based organic binder Ex-Lab binder jet printer (ExOne, USA) Curing at 230 °C (445 °F) for 3 h followed by sintering at 1200...
Abstract
Inkjet printing is extremely precise in terms of the ejected microdroplets (picoliter volume), contributing an unparalleled lateral resolution. Additionally, the benefits of high-speed deposition, contactless ink delivery, and the use of a range of ink materials endorse this technique as suitable for high-throughput 3D manufacturing. This article provides an overview of inkjet 3D printing (also referred to as 3D inkjetting). It then highlights the major components and accessories used in commercial and laboratory-based 3D inkjet printers. Next, the article describes the process physics of the transient phenomena involved in both binder-jetting- and direct-inkjetting-based 3D printing. It then discusses the scope and advantages of 3D inkjetting in the manufacturing of metallic, ceramic, and polymer-based biomaterials. The article also discusses several approaches and methodologies to examine the in vitro cytocompatibility and in vivo biocompatibility of both binder-jetted and direct-inkjetted scaffolds for biomedical applications. Finally, it discusses the challenges and troubleshooting methodologies in 3D inkjetting of biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006882
EISBN: 978-1-62708-392-8
... of scaffolds for regenerative medicine and tissue engineering application, with the aim of repairing and regenerating biological functions of damaged tissues and organs. This is achieved through the fabrication of scaffolds, whereby cells and/or biologically active compounds are directly encapsulated...
Abstract
Vat polymerization is a form of three-dimensional (3D) printing. Historically, it is the oldest additive manufacturing technique, with the development of stereolithography apparatus (SLA) by Charles Hull in 1986. This article outlines the various forms of vat polymerization techniques used for biomedical applications. Due to the complex nature of this printing process, many key print parameters and material properties need to be considered to ensure a successful print. These influential parameters are addressed throughout the article to inform the reader of the considerations that should be taken when using the vat polymerization technique. The article provides information on vat polymerization printer setup, the photo-cross-linking mechanism, and considerations using vat polymerization. In addition, it outlines and discusses the advancements of vat polymerization in the biomedical industry.
1