Skip Nav Destination
Close Modal
Search Results for
optimal performance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1501
Search Results for optimal performance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004014
EISBN: 978-1-62708-185-6
... tests are critical to assure optimal performance of the flow-formed tubular component. The article discusses the most commonly required process control parameters and the effects of forming speed and temperature in the flow forming process. flow forming flow-formed materials flow-formed tubular...
Abstract
A wide range of flow-formed open- and close-ended shapes are currently available in a variety of difficult-to-form materials, including titanium alloys and nickel-base super alloys. This article describes the two basic methods of flow forming that are characterized by the position of the rolls during the forming process. The flow forming methods include staggered-roll flow forming process and in-line flow-forming process. Typical mechanical properties of flow-formed materials in various conditions are summarized in a table. Proper process controls and subsequent product qualification tests are critical to assure optimal performance of the flow-formed tubular component. The article discusses the most commonly required process control parameters and the effects of forming speed and temperature in the flow forming process.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005733
EISBN: 978-1-62708-171-9
... be adjusted accordingly to obtain optimal performance ( Ref 1 , 2 , 3 , 4 , 5 ). The presence of nickel is related to a phase formation of β (NiAl) and γ (nickel) phases. Due to its higher ductility, the γ phase enhances the thermal fatigue resistance of the bond coat. In contrast, the β-NiAl phase...
Abstract
This article presents a summary of the current and new materials and processing techniques for thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). Different thermal spraying and postspraying processing techniques are required to produce coatings with optimal performance. For TBCs and EBCs, the elastic modulus, mechanical strength, and toughness values are extremely important in predicting failure behavior under stress and strain conditions, mainly for modeling purposes. Sand and/or volcanic ash particles are molten in the hot zones of turbines and deposited over TBCs and EBCs. They form calcium-magnesium-aluminosilicate (CMAS) glassy deposits.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006984
EISBN: 978-1-62708-439-0
... Abstract This article summarizes how the tensile properties of several key metal alloy systems commonly used in additive manufacturing (AM) compare against their traditionally manufactured counterparts, which process parameters can be manipulated to enable more optimized performance, the role...
Abstract
This article summarizes how the tensile properties of several key metal alloy systems commonly used in additive manufacturing (AM) compare against their traditionally manufactured counterparts, which process parameters can be manipulated to enable more optimized performance, the role that process-induced artifacts play in influencing tensile behavior, and how postprocessing can be employed to overcome any anomalies induced during manufacture. Popular specific grades include type 316L and 17-4PH stainless steels, AlSi10Mg, Scalmalloy, Inconel 625 and 718, H13 tool steel, Ti-6Al-4V, and cobalt-chromium.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005505
EISBN: 978-1-62708-197-9
... 1 ( x i ) with a single-function evaluation. Method A, called the “lucky guess” method, simply tries a random number with a fixed seed. Its first guess happens to be the optimal value of this problem. Obviously, this method is not very efficient for any other problem. The efficient performance...
Abstract
The process of optimization involves choosing the best solution from a pool of potential candidate solutions. This article provides a description of some classes of problems and the optimization methods that solve them. These problems include the deterministic single-objective problem, the deterministic multiobjective problem, and the nondeterministic, stochastic optimization problem. The article presents several complementary approaches to solve a wide variety of single-objective and multiobjective mechanical engineering applications. Multiobjective optimization study and stochastic optimization studies are also discussed.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... functional theory to provide an atomic-level description of materials and molecules. Information can be provided about total energies, forces, and stresses on an atomic system as well as calculation of optimal geometries, band structures, optical spectra, and phonon spectra. It can perform molecular dynamics...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002446
EISBN: 978-1-62708-194-8
... achieve important performance criteria. It is impossible to cover in detail the broad field of optimal design in this short article. The goal here, therefore, is to acquaint the reader with CAE-based design optimization and to provide direction on where to find additional information on the topic...
Abstract
This article discusses tools that are used for the systematic optimization of engineering designs. It focuses on the practical application of optimization technology in a computer-aided engineering environment. The article presents numerical optimization algorithms and provides some background on how these algorithms make decisions when searching for the optimal design. It also provides information on structural optimization, topology optimization, materials processing optimization, multidisciplinary optimization, and global optimization.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004022
EISBN: 978-1-62708-185-6
... optimization procedures. The first, and the most critical, is the composition of an objective function. If the objective is least cost, this function is called a cost function. If the objective is maximum performance, it is called a performance index. Success in this step depends on the ability to bring...
Abstract
For forming processes, optimization goals range from tuning the process parameters while keeping geometry unchanged to finding optimal geometry for intermediate dies in a multistage forming operation. This article commences with a description on the three salient steps of optimization procedures: defining the objective function, calculating the objective function, and searching an optimum design. It concludes with an example illustrating the optimization of conical-die extrusion.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006950
EISBN: 978-1-62708-439-0
...), improved anisotropic performance (mechanical), improved packing efficiency (economy) Support-free Orientation optimization, void filling, spatial filter that is integrated in the automated design process (e.g., during topology optimization, or TO) Reduced waste and print time (economy), improved...
Abstract
Additive manufacturing (AM) provides exceptional design flexibility, enabling the manufacture of parts with shapes and functions not viable with traditional manufacturing processes. The two paradigms aiming to leverage computational methods to design AM parts imbuing the design-for-additive-manufacturing (DFAM) principles are design optimization (DO) and simulation-driven design (SDD). In line with the adoption of AM processes by industry and extensive research efforts in the research community, this article focuses on powder-bed fusion for metal AM and material extrusion for polymer AM. It includes detailed sections on SDD and DO as well as three case studies on the adoption of SDD, DO, and artificial-intelligence-based DFAM in real-life engineering applications, highlighting the benefits of these methods for the wider adoption of AM in the manufacturing industry.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007022
EISBN: 978-1-62708-439-0
... in the software must be validated and documented through version control to maintain AM system qualification. Control System Different control mechanisms are employed in AM systems to maintain stable and optimal performance. The manufacturing control system (MCS) in an PBF-LB system is responsible...
Abstract
The qualification of additive manufacturing (AM) processes and the certification of AM parts is recognized as a significant impediment to the rapid, low-cost deployment of AM manufacturing. The challenges are multifaceted; however, it is an attempt to apply conventional qualification approaches to an inherently different process that has caused the most difficulty. This article examines the conventional qualification methodology and explores how the unique characteristics of AM pose a set of qualification challenges. The extant approach to the qualification of AM processes is described, followed by a discussion on a possible future state.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006636
EISBN: 978-1-62708-213-6
... Abstract This article describes high-performance liquid chromatography and ultra-high-performance liquid chromatography that are used to separate and quantify the chemical components in any sample that can be dissolved in a liquid. This includes pharmaceutical drugs, medicinal plant extracts...
Abstract
This article describes high-performance liquid chromatography and ultra-high-performance liquid chromatography that are used to separate and quantify the chemical components in any sample that can be dissolved in a liquid. This includes pharmaceutical drugs, medicinal plant extracts, food constituents, flavors, fragrances, industrial chemicals, pesticides, and pollutants. Readers are introduced to the most commonly employed mode, reverse-phase chromatography, with examples and an exclusive focus on commercially available instruments and consumables. The discussion covers the various processes involved in liquid chromatography, including assessing a separation of sample components, adjusting the mobile phase, choosing the stationary phase, optimizing a separation, preparing real samples, and analyzing complex samples.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006326
EISBN: 978-1-62708-179-5
... the casting geometry with regard to production, properties, and final performance in use ( Ref 3 , 5 , 29 , 30 ). Such analyses can be combined with topology optimization methods to reduce the casting weight. Several examples exist that demonstrate the gains to be achieved in this way ( Ref 3 , 5...
Abstract
This article discusses some of the factors that are linked directly to the casting design of ductile iron castings. It reviews the choice of molding process, application of draft, and patternmaker's allowance that should be taken into consideration in designing castings. The article describes the solidification shrinkage associated with the volume change that occurs during solidification, as well as strength and stiffness of ductile iron castings. It concludes with a discussion on the thermal deformation and residual stress in ductile iron castings.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006947
EISBN: 978-1-62708-439-0
... as technical and business risks. Design optimization should be performed, as required, at the product, part, or feature level of detail. The iterative process ends when all requirements are sufficiently satisfied or when time or budget expires. Many of the papers covered in the section “ System Design...
Abstract
Additive manufacturing (AM) processes fabricate parts in a layer-by-layer manner by which materials are added and processed repeatedly. This article introduces the general concepts and approaches to design for AM (DFAM) and outlines important implications for part characteristics, design opportunities, manufacturing practices, supply chains, and even business models. It presents contrasting perspectives on DFAM, followed by a discussion on more general and overarching opportunistic design methods and on design for constraints, similar to conventional DFM. It concludes with a presentation of a design approach to the AM process chain, acknowledging that AM-fabricated parts typically undergo several postprocessing steps and that it is important to design taking into account these steps.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005892
EISBN: 978-1-62708-167-2
... Optimization plays a key role in the design of any structure or system, and electromagnetic devices are no exception. The issue is to find a design space for a device that will satisfy the performance specifications. Often, a device includes several design criteria that cannot all be met at the same time...
Abstract
Optimization plays a key role in the design of any structure or system, and electromagnetic devices are no exception. This article provides a description of the formulation of a design problem, and provides a review of the Paretian optimality. It focuses on nondominating sorting algorithms and multiobjective evolutionary strategy algorithms associated with evolutionary computing. The article provides information on field-based optimization problems. It also discusses the design of the pancake inductor that implies the solution of coupled electromagnetic and thermal fields, along with the use of optimal design procedures, to identify the best possible device or process.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005534
EISBN: 978-1-62708-197-9
... on the assumption that the underlying model is stochastic. Thus, the use of D-optimality or D-efficiency for computer experiments is questionable ( Ref 29 ). Sampling Initially, a designer may not be able to determine a region of interest; therefore, experiments may be performed sequentially. The preliminary...
Abstract
This article presents an approach to manage the uncertainty present in materials design. It describes inductive and deductive approaches to deal with uncertainty. The article focuses on providing an understanding of the opportunities for managing uncertainty and the decisions that influence the accuracy of the results. A design of experiments (DOE) represents a sequence of experiments to be performed, expressed in terms of factors set at specified levels. The article discusses the two types of DOEs: the full factorial design and the fractional factorial design. It explains the factors to be considered when selecting a procedure for propagating uncertainty. The article lists the categories of the popular types of uncertainty propagation methods, including simulation-based methods, local expansion methods, and numerical integration-based methods.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009077
EISBN: 978-1-62708-177-1
.... This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance. bright-field illumination composite materials...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002424
EISBN: 978-1-62708-194-8
... simulations as well as to hardware. Using the Taguchi approach is not the only statistical approach to achieving robust designs that also perform well ( Ref 13 , 14 ). Robustness (that is, variability of performance) often can be included when using guided iteration and optimization for parametric design...
Abstract
This article presents an overview of an engineering design process. Though the process is extremely complex, distinct stages of design activities are identified and described. The article illustrates guided iteration methodology that helps in problem solving in design. It describes the engineering conceptual design and configuration design of special-purpose parts. It discusses the parametric design methods of the parts and best practices that are used by successful firms to achieve the goals of quality, cost, time-to-market, and marketing flexibility.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002429
EISBN: 978-1-62708-194-8
... to the ideal function of the system. Even the best of concepts does not do this in its initial configuration and trials. Systematic optimization rapidly improves the performance from the initial promising but inadequate state to a level that captures most of the potential of the concept. Metallurgists have...
Abstract
Concurrent engineering is product development that is done by concurrently utilizing all of the relevant information in making each decision. This article discusses the three aspects that must be taken into account for all product development decisions. The aspects include product functionality, production capability, and field-support capability. The concurrent process is carried out by a multifunctional team that integrates the specialties. The article schematically illustrates product design team configurations with subsystem teams and team of subsystem leaders. It discusses the three-step decision-making process, such as requirements, concepts, and improvement, followed by multifunctional product development teams. The article describes the two types of requirements development by multifunctional teams, namely, quality function deployment and functional analysis. It schematically illustrates the integration of product requirements and concept development. The article concludes with a discussion on the improvement of concepts in terms of robust design and mistake minimization.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002423
EISBN: 978-1-62708-194-8
... step (matching form to function). The actual selection of a material to satisfy a design need is effectively performed every day in literally dozens of different ways by people of many different backgrounds. The selection process can range from simply re-specifying a previously used material...
Abstract
This article discusses the various roles and responsibilities of materials engineers in a product realization organization and suggests different ways in which materials engineers may benefit their organization. It also provides a summary of the concepts discussed in the articles under the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009014
EISBN: 978-1-62708-187-0
..., design decisions that drive casting performance and cost are identified and used as the basis for a proposed holistic approach to casting design. This new design philosophy and methodology is aimed at optimizing both the structural performance and producibility of the casting while minimizing design time...
Abstract
This article discusses issues that impact a good casting design. The focus is on the casting design in general, and on sand and permanent mold aluminum casting in particular. The article examines the casting design process from a variety of design and processing perspectives. It summarizes several strategies for improving the traditional casting design process. The article also proposes some possible approaches for implementing these strategies. It presents a vision for the development of comprehensive casting design guidelines along with specific development objectives.
1