Skip Nav Destination
Close Modal
Search Results for
optical emission spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 215 Search Results for
optical emission spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006640
EISBN: 978-1-62708-213-6
... Abstract This article is a detailed account of optical emission spectroscopy (OES) for elemental analysis. It begins with a discussion on the historical background of OES and development trends in OES methods. This is followed by a description of the general principles and optical systems...
Abstract
This article is a detailed account of optical emission spectroscopy (OES) for elemental analysis. It begins with a discussion on the historical background of OES and development trends in OES methods. This is followed by a description of the general principles and optical systems of OES, along with various types of emission sources commonly used for OES. Some of the processes involved in calibration and quantification of OES for direct solids analysis by the ratio method are then described. The article ends with a discussion on the applications of each type of emission sources.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001728
EISBN: 978-1-62708-178-8
... Abstract This article discusses the general principles, optical systems, and emission sources of optical emission spectroscopy for elemental analysis. Changes in the energy of the valence or outer shell electrons result in the atomic lines used in emission spectroscopy. Each possible...
Abstract
This article discusses the general principles, optical systems, and emission sources of optical emission spectroscopy for elemental analysis. Changes in the energy of the valence or outer shell electrons result in the atomic lines used in emission spectroscopy. Each possible combination of electron configurations produces a spectroscopic term that describes the state of the atom. Atomic emission is analytically useful only to the extent that the emission from one atomic species can be measured and its intensity recorded independent of emission from other sources. Emission sources are often designed to minimize molecular emission. Each of the four types of emission sources; arcs, high-voltage sparks, glow discharges, and flames; has a set of physical characteristics with accompanying analytical assets and liabilities. The article also discusses the applications of each type of emission source.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006647
EISBN: 978-1-62708-213-6
... the use of a flame as an excitation source, combined with a prism as a dispersive system, to separate spectral lines, giving rise to the flame spectroscopy technique ( Ref 2 ). However, it was only in the 1960s that the first inductively coupled plasma optical emission spectrometer (ICP-OES), operating...
Abstract
This article provides a clear but nonexhaustive description of the general principle of atomic emission, with a particular focus on instrumentation, and summarizes the main characteristics of the inductively coupled plasma optical emission spectrometer technique. Basic atomic theory as well as the instrument characteristics and their influence on the instrument performances are presented. The advantages, drawbacks, and developments of this technique are discussed, and, finally, alternative techniques and examples of applications are provided.
Image
Published: 01 June 2016
Fig. 2 Concentration depth profile (glow discharge optical emission spectroscopy) of a nitrided case. Aluminum alloy 5083; T N = 480 °C (900 °F); t N = 3 h
More
Image
Published: 01 June 2016
Fig. 8 Glow discharge optical emission spectroscopy concentration depth profiles. (a) Aluminum alloy 360.0 nitrided at 470 °C (880 °F); t N,eff = 5 h. (b) Aluminum alloy 5083 nitrided at 470 °C (880 °F); t N,eff = 4 h
More
Image
Published: 01 October 2014
Fig. 7 Glow discharge optical emission spectroscopy (GDOES) concentration profile of carbon and nitrogen in the compound layer of low-alloyed steel after plasma nitriding. Source: Ref 12
More
Image
Published: 15 December 2019
Fig. 12 Examples of calibration curves in spark optical emission spectroscopy using the ratio method. Source: Ref 8 . Reprinted with permission of Elsevier
More
Image
Published: 15 December 2019
Fig. 14 Glow discharge-optical emission spectroscopy quantitative depth profile of a ~0.5 μm oxide layer on a low-alloy steel. Note that the scale factors for chromium, manganese, silicon, and carbon are expanded. Source: Ref 8 . Reprinted with permission of Elsevier
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... Abstract This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... Abstract The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Image
Published: 15 December 2019
-AES, inductively coupled plasma atomic emission spectroscopy; IR, infrared spectroscopy; LEISS, low-energy ion-scattering spectroscopy; NAA, neutron activation analysis; OES, optical emission spectroscopy; OM, optical metallography; RBS, Rutherford backscattering spectrometry; RS, Raman spectroscopy
More
Image
Published: 01 January 1994
spectroscopy). GDOES (GDMS), glow discharge optical emission spectroscopy (glow discharge mass spectroscopy). RBS (ISS), Rutherford backscattering spectroscopy (ion scattering spectroscopy). Source: Ref 3
More
Image
Published: 15 January 2021
Fig. 2 Schematic diagram of inductively coupled plasma optical emission spectroscopy system. RF, radio frequency. Source: Ref 3
More
Image
Published: 15 January 2021
Fig. 2 Example of burn marks left behind after arc/spark optical emission spectroscopy, illustrating how this technique is destructive to the surface. Courtesy of J. Sampson, NASA
More
Image
in Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
> Steel Heat Treating Technologies
Published: 30 September 2014
Fig. 22 Comparison of (a) simulated carbon profile with optical emission spectroscopy (OES) measurements, and dishing magnitudes after (b) case hardening and (c) blank hardening for different cutting strategies with coordinate measurements. Source: Ref 83
More
Image
Published: 01 November 2010
Fig. 6 Results from the simulation of nitriding and comparison with experimental data obtained by glow discharge optical emission spectroscopy (GD-OES) analysis. Carbon and nitrogen profiles in mass percent. Nitrided surface at origin of x -axis. Source: Ref 24
More
Image
Published: 01 October 2014
Fig. 15 (a) Micrograph of low-temperature nitrocarburized austenitic stainless steel AISI 316 in an atmosphere of (partly) decomposed urea (in situ activation). The sample was heated to 490 °C (910 °F) in 45 min and thereafter immediately cooled. (b) Glow discharge optical emission
More
Image
Published: 31 December 2017
Fig. 10 Wear indicators measured for eight of the whole fleet. The sampling numbers do not represent constant time intervals. (a) Iron concentration based on rotating disc electrode optical emission spectroscopy (RDE-OES). (b) Wear particle concentration (WPC) and (c) D L / D S values
More
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
..., optical emission spectroscopy; OM, optical metallography; RBS, Rutherford backscattering spectrometry; RS, Raman spectroscopy; SEM, scanning electron microscopy; SIMS, secondary ion mass spectroscopy, SSMS, spark source mass spectrometry; TEM, transmission electron microscopy; XPS, x-ray photoelectron...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
1