Skip Nav Destination
Close Modal
By
Robert A. Watson, Bo Jönsson, George A. Fielding, Donald V. Cunningham, C. Dean Starr
Search Results for
operating temperature
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2656 Search Results for
operating temperature
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 10 Micrographs of worn PEEK surfaces at various operating temperatures. These pictures highlight the changes in the surface deformation behavior of the polymer with temperature. (a) 90 °C (194 °F). (b) 152 °C (306 °F). (c) 180 °C (356 °F). (d) 225 °C (437 °F). Arrows indicate the sliding
More
Image
in Corrosion in Petroleum Refining and Petrochemical Operations
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 42 Operating limits for various steels in high-temperature high-pressure hydrogen service (Nelson curves) to avoid decarburization and fissuring. Source: Ref 189
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 98 Operating limits for steels in hydrogen service to avoid high-temperature hydrogen attack. PWHT, postweld heat treatment. Source: Ref 44
More
Image
in Elevated-Temperature Life Assessment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 14 Illustration showing carbon steel vessel operating at a metal temperature of 315 °C (600 °F) and 6.90 MPa (1000 psig) hydrogen partial pressure compared to operating limits in accordance with American Petroleum Institute Recommended Practice 941. PWHT, postweld heat treatment
More
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001096
EISBN: 978-1-62708-162-7
..., and thermostat metals), their subtypes, properties, service life, and operating temperatures. It describes the designing and fabrication of open resistance and sheathed heaters. The article contains a collection of tables and graphs that provide information on the mechanical properties, chemical composition...
Abstract
Electrical resistance alloys include those types used in instruments, control equipment, heating elements, and devices that convert heat generated to mechanical energy. This article discusses the basic classification of electrical resistance alloys (resistance alloys, heating alloys, and thermostat metals), their subtypes, properties, service life, and operating temperatures. It describes the designing and fabrication of open resistance and sheathed heaters. The article contains a collection of tables and graphs that provide information on the mechanical properties, chemical composition, temperature coefficient of resistance, furnace operating temperatures, length and spacing of loops, ribbon size, and electrical capacity of heating elements.
Image
Published: 01 October 2014
Fig. 1 Plots of temperature versus time showing sequence of operations required to produce tool steels. (a) Thermomechanical processing. (b) Hardening heat treatment. L, liquid; A, austenite; C, cementite; F, ferrite; M s , temperature at which martensite starts to form on cooling; RT, room
More
Image
Published: 01 January 2000
Fig. 22 Operation of the high-temperature recovery Hopkinson bar (a) before and (b) during the test. Source: Ref 1
More
Image
Published: 31 December 2017
Fig. 1 Operational pressure and temperature range of most liquid lubricants and greases. The region outside the box is considered to be an extreme environment.
More
Image
Published: 01 January 1993
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
... Abstract Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures...
Abstract
Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures. This article is a collection of curves and tables that present data on thermal softening and stress-relaxation in copper and copper alloys. Thermal softening occurs over extended periods at temperatures lower than those inducing recrystallization in commercial heat treatments. Stress relaxation occurs because of the transformation of elastic strain in the material to plastic, or permanent strain.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004136
EISBN: 978-1-62708-184-9
... Abstract This article describes the classification of fuel cells depending on the operating temperature and type of electrolytes used. This classification includes alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells...
Abstract
This article describes the classification of fuel cells depending on the operating temperature and type of electrolytes used. This classification includes alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte membrane fuel cells (PEMFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells (SOFCs). The article explains the corrosion processes in fuel cells due to solid-gas interactions, solid-liquid interactions, and solid-solid interactions. It discusses the long-term performance stability and long-term degradation processes of PEMFCs, MCFCs, and SOFCs. The article reviews the development of chemically and structurally compatible component materials in PEMFCs, MCFCs, and SOFCs.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined...
Abstract
This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated temperatures generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined with 0.5 to 9.0% Cr and perhaps other carbide formers. The factors affecting mechanical properties of steels include the nature of strengthening mechanisms, the microstructure, the heat treatment, and the alloy composition. The article describes these factors, with particular emphasis on chromium-molybdenum steels used for elevated-temperature service. Although the mechanical properties establish the allowable design-stress levels, corrosion effects at elevated temperatures often set the maximum allowable service temperature of an alloy. The article also discusses the effects of alloying elements in annealed, normalized and tempered, and quenched and tempered steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001052
EISBN: 978-1-62708-161-0
.... The article presents a list of several superalloys that have been used in gas turbine engines or that are emerging as replacements because of the promise of increased operating temperatures and higher efficiencies for the aircraft of the future. It concentrates on the objectives, results, and methodology...
Abstract
This article reviews some of the trends in superalloy development as they relate to U.S. strategic materials availability and the aerospace industry. It discusses the supply sources and availability of strategic materials and summarizes the status of U.S. resources and reserves. The article presents a list of several superalloys that have been used in gas turbine engines or that are emerging as replacements because of the promise of increased operating temperatures and higher efficiencies for the aircraft of the future. It concentrates on the objectives, results, and methodology of the NASA Conservation of Strategic Aerospace Materials (COSAM) program.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006406
EISBN: 978-1-62708-192-4
... Abstract This article reviews the factors influencing carburization to improve wear resistance of steel, such as operating temperature, cost, production volume, types of wear, and design criteria. It details the types of wear, namely abrasive wear and adhesive wear. The article discusses...
Abstract
This article reviews the factors influencing carburization to improve wear resistance of steel, such as operating temperature, cost, production volume, types of wear, and design criteria. It details the types of wear, namely abrasive wear and adhesive wear. The article discusses the characteristics of carburized steels that affect wear resistance, including hardness, microstructure, retained austenite, and carbides. It also describes the processing considerations for carburization of titanium.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures. dimpled intergranular fracture grain boundaries hydrogen embrittlement intergranular brittle cracking intergranular fatigue intergranular stress-corrosion...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
... pressure, higher temperature, or a change in gas composition to lower the gas-impurity concentration. However, for any fuel cell, compromises exist between achieving higher performance by operating at higher temperature or pressure and the problems associated with the stability or durability of cell...
Abstract
This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid, and high-temperature fuel cells, such as molten carbonate and solid oxide, are discussed. The article contains tables that provide information on the evolution of cell-component technology for these fuel cells. It concludes with information on the advantages and limitations of the fuel cells.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006407
EISBN: 978-1-62708-192-4
.... Operating conditions that range from cryogenic to ultrahigh temperatures, or from partial rotation to very high speeds, and involve a variety of hostile chemical environments all must be accommodated. A compromise is often necessary between performance levels and cost considerations. The latter involves...
Abstract
This article discusses the functions of lubricants to prevent premature failure of rolling element bearings and the advantages of fluid lubrication. It describes the composition of refined mineral oil for rolling bearing applications. The article reviews the types and properties of nonpetroleum oils, such as polyglycols, phosphate esters, silicone fluids, dibasic acid esters, and fluorinated polyethers. It discusses the properties of greases, including grease speed limits, grease composition, relubrication intervals, corrosion prevention behavior, and grease compatibility. The article concludes with a discussion on polymeric lubricants and solid lubricants.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001224
EISBN: 978-1-62708-170-2
... carcinogenic and have been identified as causes of ozone depletion. Most emulsions are now based on a “mineral spirits” derivative, a hydrocarbon mixture with a relatively high boiling point (93 to 150 °C, or 200 to 300 °F). Compositions, operating temperatures, and production applications for emulsion...
Abstract
Emulsion cleaning is an industrial cleaning process that uses an organic solvent as the main active agent. This article provides information on the applications, concerns and limitations, and process parameters of emulsion cleaning. It describes the processing variables and equipment for three main stages of emulsion cleaning: immersion cleaning, secondary cleaning, and spray cleaning. In addition, the classifications, composition, and selection criteria are also discussed.
Image
Published: 01 January 1994
(4.5) (b) Potassium fluoride (K 2 F 2 ) 34 (4.5) Trisodium phosphate (Na 3 PO 4 ) 34 (4.5) Potassium manganate (K 2 MnO 4 ) (c) 19 (2.5) Water bal to 3.7 L (to 1 gal) Operating temperature, °C (°F) Room temperature to 25 (to 77) Current density, A/dm 2 (A/ft 2 ) 1.5–2.5 (15
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003158
EISBN: 978-1-62708-199-3
.... The operating life and accuracy of a thermocouple depend on operating temperature, time at operating temperature, and number of high-to-low temperature cycles. Types of Thermocouples Commercially available thermocouples are grouped according to material characteristics (base metal or noble metal...
Abstract
Thermocouple devices are the most widely used devices for measurement of temperature in the metals industry. Favorable characteristics of these devices include good accuracy, suitability over a wide temperature range, fast thermal response, ruggedness, high reliability, low cost, and great versatility of application. Thermocouples are grouped into two broad categories, namely, standard thermocouples, including five base-metal thermocouples and three noble-metal thermocouples that have been given letter designations, and nonstandard thermocouples, including iridium-rhodium, platinum-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment.
1