Skip Nav Destination
Close Modal
Search Results for
nuclear magnetic resonance spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 81 Search Results for
nuclear magnetic resonance spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001752
EISBN: 978-1-62708-178-8
... Abstract Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles...
Abstract
Nuclear magnetic resonance (NMR) is a form of radio frequency spectroscopy based on interactions between nuclear magnetic dipole or electric quadrupole moments and an applied magnetic field or electric-field gradient. This article provides an overview of the fundamental principles of nuclear magnetic resonance with emphasis on nuclei properties, the basic equation of nuclear magnetic resonance, the classical theory of nuclear magnetization, line broadening, and measurement sensitivity. It describes the pulse-echo method for observing NMR. The article provides useful information on ferromagnetic nuclear resonance and nuclear quadrupole resonance, and illustrates the experimental arrangement of NMR with a block diagram. It also presents several application examples.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... MS mass spectrometry NAA neutron activation analysis NGR nuclear gamma-ray resonance NMR nuclear magnetic resonance NQR nuclear quadrupole resonance ODMR optical double magnetic resonance OES optical emission spectroscopy PAS photoacoustic...
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
chromatography; ICP-MS: inductively coupled plasma mass spectrometry; LC: liquid chromatography; LC/MS: liquid chromatography/mass spectrometry; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; RS: Raman spectroscopy; UV/VIS: ultraviolet/visible
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... erg / G where e is the charge of the electron, m is the mass of the electron, and c is the velocity of light. The first part of Eq 2 , ω 0 = γ H 0 , is ordinarily used in nuclear magnetic resonance (NMR), in which gyromagnetic ratios are tabulated. In ESR, it is customary to measure...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning electron microscopy; SIMS: secondary ion mass
More
Image
Published: 15 December 2019
: liquid chromatography/mass spectrometry; LEISS: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... chromatography; ICP-MS, inductively coupled plasma mass spectroscopy; LC, liquid chromatography; LC/MS: liquid chromatography/mass spectrometry; LEISS, low-energy ion-scattering spectroscopy; MFS, molecular fluorescence spectroscopy; NAA, neutron activation analysis; NMR, nuclear magnetic resonance; OM, optical...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006945
EISBN: 978-1-62708-395-9
... Association NIST National Institute of Standards and Technology NMR nuclear magnetic resonance NR nitrile resins; natural rubber NRM nuclear magnetic resonance PA polyamide PAE polyaryl ether PAEK polyaryl ether ketone (also abbreviated PEK) PAI polyamide-imide PAK polyaromatic ketones PAN polyacrylonitrile...
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007004
EISBN: 978-1-62708-450-5
... 25 ), gas chromatography ( Ref 26 ), and nuclear magnetic resonance spectroscopy ( Ref 27 ). To determine the fatty acid composition by gas chromatography (GC), it is necessary to prepare the oil or fat so that the acylglycerols are isolated from the triacylglycerol molecule. These fatty acids...
Abstract
This article focuses on the quenching properties of vegetable and animal oils, including toxicity and biodegradability of vegetable/animal oils. The article provides a detailed discussion on the oxidation of vegetable/animal oils. The addition of antioxidants to stabilize soybean and palm oils is discussed, and the article concludes that substantially better performance is required if vegetable oils are to be effective functional equivalents to petroleum oil formulations. This may be done by selecting different vegetable oil compositions with less unsaturation, by applying genetic modification of soybean seed oils, or by chemically modifying and stabilizing the vegetable oil structure.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001753
EISBN: 978-1-62708-178-8
... spectroscopy nonferrous metals surface analysis Overview Introduction The Mössbauer effect (ME) is a spectroscopic method for observing nuclear γray fluorescence using the recoil-free transitions of a nucleus embedded in a solid lattice. It is sometimes referred to as nuclear gamma-ray resonance...
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence based on recoil-free transitions in a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME and related concepts such as recoil-free fraction, absorption cross section, gamma-ray polarization, isomer shift, and quadrupole and magnetic interactions. It illustrates the experimental arrangement for obtaining ME spectra and presents several application examples.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006646
EISBN: 978-1-62708-213-6
... moment and a magnetic field at the nuclear site is useful for phase identification, for observing magnetic transitions, and for studying the local atomic environment of the resonating nucleus. This Zeeman effect is characterized by the Hamiltonian: (Eq 17) H = − μ · H 0 = − γ ℏ I · H...
Abstract
The Mossbauer effect (ME) is a spectroscopic method for observing nuclear gamma-ray fluorescence using the recoil-free transitions of a nucleus embedded in a solid lattice. This article provides an overview of the fundamental principles of ME, covering recoil-free fraction, absorption, selection rules, gamma-ray polarization, isomer shift, quadrupole interaction, and magnetic interaction. Experimental arrangement for obtaining ME spectra is described and several examples of the applications of ME are presented. The article contains tables listing some properties of Mossbauer transitions and principal methods used for producing ME sources.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... , ASTM , Philadelphia , 1984 , p 305 – 309 • “Standard Definitions of Terms, Symbols, Conventions and References Relating to High-Resolution Nuclear Magnetic Resonance(NMR) Spectroscopy,” E 386, Annual Book of ASTM Standards , Vol 14.01 , ASTM , Philadelphia , 1984 , p 453 – 463...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... , American Society for Testing and Materials , Philadelphia, PA , 1984 , p 305 – 309 • “ Standard Definitions of Terms, Symbols, Conventions and References Relating to High-Resolution Nuclear Magnetic Resonance (NMR) Spectroscopy ,” E 386, Annual Book of ASTM Standards , Vol 14.01 , American...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... • … … … • • … … … • • • S … … Molecular fluorescence spectroscopy D,N D,N D,N … D,N D,N D,N D,N … … D,N D,N D,N … … Neutron activation analysis N … … N N N N N … … N N N … … Nuclear magnetic resonance N D,N • D,N,S N N N N … … N N S N S Optical metallography...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... polyvinyl acetate mPa millipascal PCE pyrometric cone equivalent PVAL polyvinyl alcohol MPa megapascal PCD polycrystalline diamond PVB polyvinyl butyral mpg miles per gallon mph miles per hour PCL polycaprolactone PVC polyvinyl chloride MRI magnetic resonance imaging PCS photocorrelation spectroscopy PVD...
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0005549
EISBN: 978-1-62708-162-7
... metallurgy LPE liquid-phase epitaxy GTAW gas tungsten arc welding in. inch LT long transverse (direction) IPTS International Practical Temperature Scale Abbreviations, Symbols, and Tradenames / 1275 m meter nm nanometer rf radio frequency m strain rate sensitivity factor NMR nuclear magnetic resonance RHIC...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001777
EISBN: 978-1-62708-178-8
... corresponding to separated components) and analyzed by other analytical techniques, such as mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance. In this manner, it may be possible to make an unambiguous identification of the compound. The various components of the liquid chromatograph...
Abstract
This article introduces the fundamental concepts and the essential components of liquid chromatography (LC). It discusses the different modes of LC, such as liquid-solid chromatography, liquid-liquid chromatography, bonded-phase chromatograph, normal-phase chromatography, reversed-phase chromatography, ion-exchange chromatography, ion-pair chromatography, and size-exclusion chromatography. The article also includes a discussion on the qualitative and quantitative analyses and the applications of LC.
1