Skip Nav Destination
Close Modal
Search Results for
nuclear energy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 456 Search Results for
nuclear energy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
... degradation. Boiling water reactor topics dealing with localized corrosion of zirconium alloy fuel cladding, plus a detailed analysis of the effects of irradiation on corrosion are addressed in other articles in this Section, “Corrosion in the Nuclear Power Industry.” The corrosion of balance-of-plant...
Abstract
This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches, and their impact on aging management programs. The article reviews the effects of materials, environment, and stress factors on the cracking susceptibility of ferritic and austenitic structural alloys in BWRs. It describes the methods, such as data-based life-prediction approaches and mechanisms-informed life-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
... for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion. nuclear energy nuclear...
Abstract
Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001112
EISBN: 978-1-62708-162-7
...-energy physics, thermonuclear fusion, and nuclear magnetic resonance. cold processing fabrication technology hot processing superconducting properties ternary molybdenum chalcogenides THE TERNARY MOLYBDENUM CHALCOGENIDES have generated many fundamental as well as applied research efforts...
Abstract
Ternary molybdenum chalcogenides stands for a vast class of materials, whose general formula is MxMO6X8, where, M is a cation and X is a chalcogen (sulfur, selenium, or tellurium). Possible applications of some of these are as high field superconductors (that is, >20 T, or 200 kG). This article discusses the fabrication methods of PbMo6S8 (PMS) and SnMo6S8 (SMS), including hot processing and cold processing. It provides a short note on the superconducting properties of PMS wire filaments and their applications in processes requiring high magnetic fields, such as high-energy physics, thermonuclear fusion, and nuclear magnetic resonance.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001749
EISBN: 978-1-62708-178-8
... from a common supply that furnishes ±6 V dc and ±12 V dc. Abstract Abstract Radioanalysis is an analytical technique that uses energy emitted by radioactive isotopes to measure the concentration of related elements in test samples. This article begins with a discussion on the principles...
Abstract
Radioanalysis is an analytical technique that uses energy emitted by radioactive isotopes to measure the concentration of related elements in test samples. This article begins with a discussion on the principles of radioactive decay and various forms of emission, including alpha and beta-particle emission, positron emission, and gamma and x-ray emission. It compares and contrasts measurement techniques based on various detectors, namely, charged-particle detectors, photon detectors, counting and recording instruments, and radioactive decay spectrometers. It also addresses sample preparation, equipment and process safety, and the handling of radioactive gasses and materials. The article concludes with application examples involving the analysis of rare-earth elements and nuclear fuels.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological). coatings paints...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
... the core of an operating nuclear reactor. The LOCA is triggered when the pressure boundary of the reactor is breached, pressure is lost, and the coolant water flashes to steam. The sudden release of kinetic energy instantly elevates the reactor containment pressure and temperature. Coolant flow through...
Abstract
Surface coatings are essential in all facilities that process nuclear materials or use nuclear fission for power generation. This article describes the coatings used in two basic types of Generation 3 nuclear reactor designs in the United States and their containment size. These reactors are the boiling water reactor (BWR) and pressurized water reactor (PWR). The article provides information on the loss-of-coolant accident (LOCA) identified as the design basis accident (DBA), which can rapidly de-water the core of an operating nuclear reactor. To avoid LOCA, both the BWR and the PWR include emergency core cooling systems. The article describes a DBA test and other coating performance parameters necessary for safety-related coating systems. It provides a detailed account of the selection criteria of coating types in a nuclear plant. The article concludes by highlighting protective coating strategies in Generation 3 Plants.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003594
EISBN: 978-1-62708-182-5
.... , in Proceedings of the International Conference on Liquid Metal Engineering and Technology , Vol 3 , The British Nuclear Energy Society , 1985 , p 65 – 72 Selected References Selected References • Anderson T.L. and Edwards G.R. , The Corrosion Susceptibility of 2-1/4 Cr-1 Mo Steel...
Abstract
This article examines a type of corrosion that occurs when solids (primarily metals) are exposed to liquid metal environments. It describes the principle mechanisms of liquid metal corrosion, including dissolution, impurity and interstitial reactions, alloying, and compound reduction. It also provides guidelines for materials selection and alloy development based on liquid metal corrosion reactions.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
... of the British Nuclear Energy Society, Thomas Telford Ltd., 1973 • Proceedings of the International Conference on Sodium Technology and Large Fast Reactor Design , ANL-7520, Part I, National Technical Information Service, 1969 • Proceedings of the Third International Conference on Liquid Metal...
Abstract
This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor metal coolants is described. Some information on safety precautions for handling liquid metals, operating circulating systems, dealing with fire and spillage, and cleaning contaminated components, are also provided.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001036
EISBN: 978-1-62708-161-0
... Embrittlement and Creep in Fuel Cladding and Core Components , British Nuclear Energy Society , 1972 , p 109 – 115 10.2172/4925002 21. Hawthorne J.R. , Irradiation Embrittlement , in Treatise on Materials Science and Technology , Vol 25 , Academic Press, 1983 , p 461 – 524 10.1016/B978-0...
Abstract
Damage to steels from neutron irradiation affects the properties of steels and is an important factor in the design of safe and economical components for fission and fusion reactors. This article discusses the effects of high-energy neutrons on steels. The effects of damage caused by neutron irradiation include swelling (volume increase), irradiation hardening, and irradiation embrittlement (the influence of irradiation hardening on fracture toughness). These effects are primarily associated with high-energy (greater than 0.1 MeV) neutrons. Consequently, irradiation damage from neutrons is of considerable importance in fast reactors, which produce a significant flux of high-energy neutrons during operation. Irradiation embrittlement must also be considered in the development of ferritic steels for fast reactors and fusion reactors. Although ferritic steels are more resistant to swelling than austenitic steels, irradiation may have a more critical effect on the mechanical properties of ferritic steels.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... degradation in core components in nuclear power reactors, which make up approximately 17% of the world's electric power production. Service failures have occurred in boiling water reactor (BWR) core components and, to a somewhat lesser extent, in pressurized water reactor (PWR) core components consisting...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... O 7 with (a) no apodization and (b) 200 Hz Gaussian line broadening. Only the isotropic peaks due to the two Q 1 polyhedra are shown. Fig. 1 Schematic showing the nuclear spin energy levels as a function of spin quantum number, I , and externally applied magnetic field, B 0...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
... Electronic transitions Kilo electron volt 1.602 × 10 −16 γ-ray 10 19 –10 22 3 × 10 −9 – 3 × 10 −12 cm Mega electron volt 1.602 × 10 −13 Discharge tube Photocell Low energy, nuclear 10 19 –10 23 3 × 10 −9 – 3 × 10 −13 cm Mega electron volt 1.602 × 10 −33 Inner-shell electronic...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... in lamp filaments, electron tube grids, heating elements, and electrical contacts. However, they have since found application in the aerospace, electronics, nuclear and high-energy physics, and chemical-process industries. Each of the refractory metals, with the exception of rhenium, is consumed...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
.... It concludes with a discussion on the Charpy energy correlations for aged stainless steels. austenitic stainless steel base metal Charpy energy correlations cold-work-induced strengthening crack orientation fracture mechanics fracture toughness neutron irradiation strain rate thermal aging weld...
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors. low-strength austenitic stainless steels corrosion fouling intergranular corrosion intergranular stress corrosion cracking nickel-base alloys high-strength nickel-base alloys nuclear...
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
..., and armor-piercing kinetic energy penetrators because of its high density (68% greater than lead) and ease of fabrication. Uranium has moderate strength and ductility and can be cast, formed or machined, and welded by standard methods. Pure uranium metal and uranium alloys have also been used as nuclear...
Abstract
This article reviews general corrosion of uranium and its alloys under atmospheric and aqueous exposure as well as with gaseous environments. It describes the dependence of uranium and uranium alloy corrosion on microstructure, alloying, solution chemistry, and temperature as well as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology of hydride corrosion of uranium are discussed. The article provides information on environmentally assisted cracking, protective coatings, and surface modification of uranium and its alloys. It also summarizes the environmental, safety, and health considerations for their use.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... strongly depend on the production of electricity from the various energy sources such as coal, gas, nuclear energy, or renewable energy. The world average value for 1996 ( Fig. 14 ) is quite low because a large amount of electricity worldwide is produced from hydro power. Looking to the conversion factors...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004149
EISBN: 978-1-62708-184-9
... as a potential repository site began in the late 1970s. At that time, the U.S. Department of Energy was also considering other locations with other types of geological formations. In late 1982, the U.S. Congress passed legislation (Nuclear Waste Policy Act) that codified the process for characterizing...
Abstract
This article addresses the long-term corrosion behavior of high-level waste (HLW) container materials, more specifically of the outer shell of the containers. It discusses time, environmental, and materials considerations for the emplacement of HLW in geological repositories. Environmental corrosion resistance of materials planned for reducing repositories is also discussed. The article reviews the design and characterization of nuclear waste repository with an oxidizing environment surrounding the waste package.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006432
EISBN: 978-1-62708-192-4
... to create radioactive isotopes in the samples to be tested. Particles—such as neutrons, protons, or deuterons—are accelerated and then used to induce nuclear reactions in the material of the test piece. The activation method, the irradiated material, and the applied activation energy determine the total...
Abstract
Radionuclide methods for wear measurement are used to measure wear continuously throughout a tribological experiment at a resolution of nanometers or micrograms per hour. This article presents an overview of radionuclide methods for wear measurement. It discusses complementary wear measurement methods to introduce the advantages of using radioactive isotopes (RI) for wear or corrosion measurements in comparison to other methods. The article provides information on radiation safety regulations and approaches to minimize external radiation exposure. It describes neutron activation, thin layer or surface layer activation, and ultrathin layer or recoil activation that are used to create radioactive isotopes in the samples to be tested. The article reviews the two common types of wear measurement setup configurations: the direct method and the indirect method. It concludes with a discussion on the practical application of wear measurement using radioactive isotopes.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001117
EISBN: 978-1-62708-162-7
... Hemispherical Emittance At 9.3 μm: 3% at 25 °C, 15 to 20% at 660 °C (liquid) Nuclear Properties Neutron Cross Section For neutron energy of 0.02 V, 0.2 b/atom; for 100 MV, 0.6 to 0.7 b/atom Mechanical Properties Tensile Properties See Table 1 , Table 2 , and Fig. 3 . Tensile...
Abstract
This article presents the following characteristics of pure metals : structure, chemical composition, mass characteristics, thermal properties, electrical properties, chemical properties, magnetic properties, optical properties, fabrication characteristics, nuclear properties, and mechanical properties.