Skip Nav Destination
Close Modal
Search Results for
nonplanar microstructures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 31 Search Results for
nonplanar microstructures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005210
EISBN: 978-1-62708-187-0
... Abstract Nonplanar microstructures form most frequently during the solidification of alloys, and play a crucial role in governing the properties of the solidified material. This article emphasizes the basic ideas, characteristic lengths, and the processing conditions required to control...
Abstract
Nonplanar microstructures form most frequently during the solidification of alloys, and play a crucial role in governing the properties of the solidified material. This article emphasizes the basic ideas, characteristic lengths, and the processing conditions required to control the columnar and equiaxed microstructures. The formation of cellular and dendritic structures in one- and two-phase structures is presented with emphasis on the effect of processing conditions and composition on the selection of microstructure and microstructure scales.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001338
EISBN: 978-1-62708-173-3
.... These approaches will be discussed in the section “Nonequilibrium Effects: High-Rate Weld Solidification and Composition Banding” in this article. Development of Weld Microstructures Nonplanar solidification develops when a protrusion moves ahead of the rest of the solid-liquid interface and continues...
Abstract
The process of solidification is the same in all cases, whether it is the freezing of water on a windshield or in a freezer or the solidification of metal in a casting or in the weld that joins two solids. This article discusses the solidification of alloy welds and provides a comparison of casting and welding solidification. The constitutional supercooling model for describing weld solidification is presented because it qualitatively describes the evolution of different weld microstructures. The article describes the welding rate effect on weld pool shape and microstructure, as well as the nonequilibrium effects.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001838
EISBN: 978-1-62708-181-8
... fractal dimensions that result from these analyses appear to possess some generality for natural irregular nonplanar surfaces and their profiles. fractal analysis fracture surface quantitative fractography surface roughness RESEARCH into the field of quantitative fractography has progressed...
Abstract
This article discusses the fractal characteristics of fracture surfaces as a means for describing and quantifying irregular, complex curves and surfaces of fractured materials. It describes the important relationship between the profile and surface roughness parameters that yield the surface area of irregular fracture surfaces. The article reviews the experimental procedures required to obtain profiles and measurements that are made. In addition, fractal equations that linearize all the experimental data and provide constant fractal dimensions are presented in the article. Modified fractal dimensions that result from these analyses appear to possess some generality for natural irregular nonplanar surfaces and their profiles.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003301
EISBN: 978-1-62708-176-4
... in detail. It illustrates a 75-mm Hopkinson system, particularly designed to test large samples of concrete, rock, polymeric composites, and other materials with relatively coarse microstructures. The article also provides information on the pneumatic pressure vessel for a 75-mm Hopkinson bar test system...
Abstract
Triaxial Hopkinson techniques can be used to simultaneously subject a sample to axial and lateral compressions. The lateral compression may be applied through a pneumatic pressure vessel or dynamically using a special Hopkinson technique. This article reviews these two techniques in detail. It illustrates a 75-mm Hopkinson system, particularly designed to test large samples of concrete, rock, polymeric composites, and other materials with relatively coarse microstructures. The article also provides information on the pneumatic pressure vessel for a 75-mm Hopkinson bar test system and the dynamic triaxial load cell on a 19-mm Hopkinson bar.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
... quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles...
Abstract
The principal objective of quantitative fractography is to express the characteristics of features in the fracture surface in quantitative terms, such as the true area, length, size, spacing, orientation, and location. This article provides a detailed account of the development of more quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles and surfaces. The applications of quantitative fractography for striation spacings, precision matching, and crack path tortuosity are also discussed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003741
EISBN: 978-1-62708-177-1
... Abstract Interdiffusion microstructures appear as a region on either side of the original interface of contact between two materials. This article outlines the principles used in analyzing various interdiffusion microstructures: binary systems, copper-base systems, nickel-base systems...
Abstract
Interdiffusion microstructures appear as a region on either side of the original interface of contact between two materials. This article outlines the principles used in analyzing various interdiffusion microstructures: binary systems, copper-base systems, nickel-base systems, and silicide-forming systems. The analysis can be helpful in classifying microstructures and in understanding how they change with alloy composition, especially when thermal history is known. The microstructures also help in identifying microstructural artifacts caused by polishing and in recognizing errors in reported heat treating schedules.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... of crystallographic orientations of the features present in the fracture surface ( Ref 46 ). Direct simultaneous observations of a nonplanar fracture surface in 3D space and the 3D microstructure just beneath it can be extremely useful in understanding and quantifying the failure modes and the relationships between...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
... detailed information on these aspects of sputter processes is provided in the general literature ( Ref 6 , 7 , 8 , 9 , 10 , 11 ). Process Parameter Effects on Film Microstructure Scattering within the discharge significantly affects the energy with which atoms impact the film surface and, hence...
Abstract
Sputtering is a nonthermal vaporization process in which the surface atoms are physically ejected from a surface by momentum transfer from an energetic bombarding species of atomic/molecular size. It uses a glow discharge or an ion beam to generate a flux of ions incident on the target surface. This article provides an overview of the advantages and limitations of sputter deposition. It focuses on the most common sputtering techniques, namely, diode sputtering, radio-frequency sputtering, triode sputtering, magnetron sputtering, and unbalanced magnetron sputtering. The article discusses the fundamentals of plasma formation and the interactions on the target surface. A comparison of reactive and nonreactive sputtering is also provided. The article concludes with a discussion on the several methods of process control and the applications of sputtered films.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007033
EISBN: 978-1-62708-387-4
... accurate estimates of the feature characteristics and topography of fractured (i.e., nonplanar) surfaces. The motivation to quantify fracture surfaces evolved from the use of the scanning electron microscope (SEM) as a tool in fractography. Because SEM microfractography defines topographical features...
Abstract
The development of quantitative fractography (QF) parameters basically requires topological data of a fracture surface that can be derived from the stereological analysis of multiple projected scanning electron microscope (SEM) images; the profilometry-based techniques that measure the fracture surface profile along x-y sections of a fracture surface from metallographic sections or nondestructive techniques; and the three-dimensional reconstruction of the fracture surface topology using imaging methods such as stereo SEM imaging and confocal scanning laser microscopy. These three general methods of assessing fracture surface topology are reviewed in this article.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002366
EISBN: 978-1-62708-193-1
... for the nonconformity of small/short crack behavior with that of mechanically long cracks: Differences in plasticity-induced closure transients relative to long cracks Microstructural roughness-induced closure/bridging Interaction with microstructural features, three-dimensional nonplanar growth...
Abstract
This article provides information on the typical experimental observations of formation and propagation of small fatigue cracks under various stress states and explores the relation to long crack fracture mixed-mode fracture mechanics. It discusses state I crystallographic and stage II normal stress-dominated growth, along with some observations regarding the influence of combined stress state on the propagation of small cracks. The article discusses the differences between low-cycle fatigue and high-cycle fatigue (HCF) behaviors. Several other features of multiaxial fatigue are also explained, including mean stress effects, sequences of stress/strain amplitude or stress state, nonproportional loading and cycle counting, and HCF fatigue limits. In addition, the article covers the formation and propagation of cracks on the order of several grain sizes in diameter in initially isotropic and ductile structural alloys.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... of dislocation-based plastic deformation in crystals. The output of the simulation yields information about the microstructure, local quantities of interest (internal stresses, dislocation densities, slip systems activity), and the global mechanical response. Laboratoire d'Etude des Microstructures http...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
... Abstract The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes...
Abstract
The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes the general preparation of metallographic specimens and the methods of macroscopic and microscopic examination. Usually, gray-scale (black-and-white) metallography is sufficient for microstructural analysis of cast irons. The article discusses the use of color metallography of gray irons and ductile irons. It also presents application examples of color metallography.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006311
EISBN: 978-1-62708-179-5
... metal casting. Solidification is, strictly speaking, the transformation of liquid matter into solid matter. The microstructure that results from solidification may be the final one, in which case it directly affects the mechanical properties of the product. In other cases, heat treatment or other...
Abstract
Solidification processing is one of the oldest manufacturing processes, because it is the principal component of metal casting processing. This article discusses the fundamentals of solidification of cast iron. Undercooling is a basic condition required for solidification. The article describes various undercooling methods, including kinetic undercooling, thermal undercooling, constitutional undercooling, and pressure undercooling. For solidification to occur, nuclei must form in the liquid. The article discusses the various types of nucleation: homogeneous nucleation, heterogeneous nucleation, and dynamic nucleation. It reviews the classification of eutectics based on their growth mechanism: cooperative growth and divorced growth. The article concludes with a discussion on the solidification structures of peritectics.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
.... The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003724
EISBN: 978-1-62708-177-1
.... The microstructure that results from solidification may be the final one, in which case it directly affects the mechanical properties of the product. In other cases, heat treatment or other processes may be used after solidification to further modify the solidification microstructure. However, the outcome...
Abstract
This article provides information on four different length scales at which surface morphology can be viewed: macro, meso, micro and nanoscale. Elementary thermodynamics demonstrates that a liquid cannot solidify unless some undercooling below the equilibrium (melting) temperature occurs. The article details five types of solidification undercooling, namely, kinetic, thermal, constitutional (solutal), curvature, and pressure undercooling. It explains the types of nucleation which occur in the melt during solidification. The effects of local instabilities at the solid/liquid interface during growth are illustrated. The article also describes the solidification structures of pure metals, solid solutions, eutectics, peritectics, and monotectics.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005609
EISBN: 978-1-62708-174-0
... Abstract This article reviews the fundamental solidification concepts for understanding microstructural evolution in fusion welds. The common concepts, namely, nucleation, competitive grain growth, constitutional supercooling, solute redistribution, and rapid solidification, depend...
Abstract
This article reviews the fundamental solidification concepts for understanding microstructural evolution in fusion welds. The common concepts, namely, nucleation, competitive grain growth, constitutional supercooling, solute redistribution, and rapid solidification, depend on the solidification parameters during welding, are discussed. The article discusses important solidification parameters, including temperature gradient, solid/liquid interface growth rate, and cooling rate.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
... into the microstructure and macrostructure of fiber reinforced composites (FRC). The most widespread use of microscopy for composites is determining void content, ply counts, and fiber orientations. While this makes up the majority of analysis, the investigation of failure mechanisms and microstructural analysis is also...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006565
EISBN: 978-1-62708-290-7
... microstructures in additive manufacturing. 3D printing laser-induced forward transfer LASER-INDUCED FORWARD TRANSFER (LIFT) is a digital direct-write printing technique with many applications in additive micromanufacturing, ranging from printed electronics to tissue engineering. Laser-induced forward...
Abstract
This article discusses the basic operating principles, industrial applications, and advantages as well as the parameters influencing the process of laser-induced forward transfer (LIFT) of solid materials, liquid materials, laser-absorbing layers, intact structures, and metallic 3D microstructures in additive manufacturing.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009072
EISBN: 978-1-62708-177-1
... cavity molds composite specimen hand polishing mounting sample clamping sample preparation sectioning SPECIMEN PREPARATION is the first step that determines the quality of the microstructural information that can be obtained using optical microscopy. Without high-quality preparation techniques...
Abstract
This article describes how composite specimens are sectioned, documented, and labeled during sample preparation. The mounting procedures for the specimen are summarized. The article explains sample clamping, which involves not mounting the specimens using an adhesive or casting resin and corresponds to clamped samples used in automated polishing heads. It details that cavity molds involve mounting the composite specimens using a casting resin in a preset mold. The article also discusses the mounting of composite materials for hand polishing.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009076
EISBN: 978-1-62708-177-1
... microstructural features at the theoretical limit for optical microscopy. Thin sections allow the use of several types of transmitted-light microscopy contrast methods on materials normally considered opaque. Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites...
Abstract
This article describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted light microscopy. It provides information on the contrast-enhancement methods used by transmitted-light microscopy and optimization of microscope conditions. Examples of composite ultrathin sections analyzed using transmitted-light microscopy contrast methods are also presented.
1