1-19 of 19 Search Results for

nonfusion welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
...; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006739
EISBN: 978-1-62708-210-5
... to hot shortness. Modified fusion processes such as electron beam welding and laser beam welding may be more applicable. The use of nonfusion processes such as friction stir welding have also been successfully demonstrated with 7085. Post-weld aging might be needed to obtain acceptable corrosion...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
... by using casting, forging, or welding and joining processes. The manufacturing methodology used in the fabrication of nickel-base superalloy components is based on geometric needs and necessary mechanical properties to enable the component to perform in service for the required lifetime. Additive...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... Abstract Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
... Abstract Arc welding is one of several fusion processes for joining metals. This article introduces the fundamentals of arc welding and provides a summary of its history and early discoveries. arc shielding arc welding welding electrodes ARC WELDING is one of several fusion...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
.... On the other hand, the shape of the weld pool changes with the gap size. It has also been observed that the presence of air in the gap may lead to the formation of porosity and nonfusion ( Ref 8 ). Micropores sometimes form in the fusion zone, and the number of pores and their size increase with increasing gap...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
... (LBW) have all been used successfully on a limited scale. MA 956 sheet assemblies have also been made using resistance spot welding (RSW). As might be expected, nonfusion processes are required in order to obtain tensile and stress-rupture properties approaching those of the parent metal. Vacuum...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005551
EISBN: 978-1-62708-174-0
... into the nooks and crannies, created by melting either the materials being joined or by adding a molten compatible filler material. The first bulleted option is the basis for nonfusion pressure welding, while the second bulleted option is the basis for fusion welding (both of which are described in the section...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001360
EISBN: 978-1-62708-173-3
... areas of nonfusion on its vertical leg or shrink fissures, which have no adverse affect on weld strength or ductility ( Ref 4 ). Consequently, it is not subject to the profile and inspection criteria used for a conventional weld fillet. Dimensions for counterbore and countersink weld flash clearance...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005555
EISBN: 978-1-62708-174-0
... that is produced by conventgional welding techniques. It may have areas of nonfusion on its vertical leg or shrink fissures, which have no adverse affect on weld strength or ductility ( Ref 4 ). Consequently, it is not subject to the profile and inspection criteria used for a conventional weld fillet. Dimensions...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... were removed for fractographic examination. Following cleaning, the flat, dark region was revealed to be an area of nonfused joint bevel at the middle of the pipe wall, between the fractured ID and OD welds. This type of discontinuity is typically referred to as incomplete cross-weld penetration. Areas...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... the formation of toe cracks. Fig. 7 Toe cracks in the HAZ of a double-submerged arc weld. Another type of defect in double-submerged arc welds results from lack of penetration, in which the inside and outside beads are too shallow and do not overlap. This leaves a nonfused portion, thereby...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
... ( Ref 1 ). Welding methods without melting of the base metal include brazing welding and some solid-state methods such as friction welding and pressure welding. Nonfusion welding methods are briefly discussed at the end of this article. The advantages and limitations of a given arc welding process...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001403
EISBN: 978-1-62708-173-3
... Abstract The selection of materials for welded construction applications involves a number of considerations, including design codes and specifications. Mobile structures have quite different materials requirements for weight, durability, and safety than stationary structures, which are built...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... stainless steel brazeability brazed joints brazing failure analysis BRAZING comprises a group of nonfusion joining processes that produce coalescence of materials by heating them to a suitable temperature and by using a filler metal having a liquidus temperature above 450 °C (840 °F) but below...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005614
EISBN: 978-1-62708-174-0
... Abstract Electron beam welding (EBW) can produce deep, narrow, and almost parallel-sided welds with low total heat input and relatively narrow heat-affected zones in a wide variety of common and exotic metals. This article focuses on essential parameters of EBW, namely, weld and surface...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... the ability to detect certain types of flaws. In some circumstances, although flaws are detected, the selected view presents an unsatisfactory or distorted picture of the relationship of the flaws to testpiece shape. For example, a crack in the fillet of a T-shape section of a casting or in a weld in a T...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). These two types of metal AM technology are fusion-based processes with similarities to fusion welding ( Ref 9 ) or, in some cases, a cross between welding and cast product ( Ref 10 ). The metallurgical...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... of steels Layer additions Hardfacing: Fusion hardfacing (welded overlay) Thermal spray (nonfusion-bonded overlay) Coatings: Electrochemical plating Chemical vapor deposition (electroless plating) Thin films (physical vapor deposition, sputtering, ion plating) Ion...