Skip Nav Destination
Close Modal
Search Results for
nonfretted specimens
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7 Search Results for
nonfretted specimens
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
..., are reviewed. fretting fretting fatigue cracks fatigue limit nonfretted specimens stress analysis fretting fatigue modelling fretting fatigue testing fretting prevention surface stress wear resistance FRETTING is a special wear process that occurs at the contact area between two materials...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted specimens. This article describes the mechanisms of fretting and fretting fatigue; stress analysis, modeling, and prediction of fretting fatigue; fretting fatigue testing; and fretting prevention methods. Three general geometries and loading conditions for fretting fatigue, along with their remedies, are reviewed.
Image
Published: 01 January 2003
Fig. 14 Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude was 30 to 40 μm.
More
Image
Published: 01 January 1996
Fig. 1 (a) Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude was 30 to 40 μm. (b
More
Image
Published: 01 January 2000
Fig. 1 Effects of fretting. (a) Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched from 900 °C (1650 °F), tempered 1 h at 450 °C (840 °F), and tested in tension-tension fatigue. Normal stress was 48.3 MPa (7 ksi); slip amplitude
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001038
EISBN: 978-1-62708-161-0
... cracking. Under fretting conditions, fatigue cracks are initiated at very low stresses, well below the fatigue limit of nonfretted specimens. Decarburization is the depletion of carbon from the surface of a steel part. As indicated in Fig. 18 , it significantly reduces the fatigue limits of steel...
Abstract
The process of fatigue failure consists of three stages: initial fatigue damage leading to crack initiation; crack propagation to some critical size; and final, sudden fracture of the remaining cross section. Variations in mechanical properties, composition, microstructure, and macrostructure, along with their subsequent effects on fatigue life, have been studied extensively to aid in the appropriate selection of steel to meet specific end-use requirements. The metallurgical variables having the most pronounced effects on the fatigue behavior of carbon and low-alloy steels are strength, ductility, cleanliness, residual stresses, surface conditions, and aggressive environments. The article discusses the stress-based and strain-based approach to fatigue. The application of fatigue data in engineering design is complicated by the characteristic scatter of fatigue data; variations in surface conditions of actual parts; variations in manufacturing processes such as bending, forming, and welding; and the uncertainty of environmental and loading conditions in service.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... initiate at very low stresses, well below the fatigue limit of nonfretted specimens. In fatigue without fretting, the initiation of small cracks can represent 90% of the total component life. The wear mode known as fretting can cause surface microcrack initiation within the first several thousand cycles...
Abstract
Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists the factors that are known to influence the severity of fretting and discusses the variables that contribute to shear stresses. These variables include normal load, relative displacement (slip amplitude), and coefficient of friction. The article describes the general geometries and loading conditions for fretting fatigue. It presents the types of fretting fatigue tests and the effect of variables on fretting fatigue from different research test programs. The article also lists the general principles and practical methods for the abatement or elimination of fretting fatigue.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
... that is also subject to cyclic fatigue stresses, failure occurs. An example of wire rope fretting fatigue is shown in Fig. 19 Note the lip in the detail micrograph in Fig. 20 . Fig. 14 Comparison of fatigue life for 4130 steel under fretting and nonfretting conditions. Specimens were water quenched...
Abstract
Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. It describes the factors affecting the severity of fretting corrosion. The article also illustrates the relationship between corrosion fatigue and stress-corrosion cracking.