1-20 of 381 Search Results for

nonferrous forging

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003990
EISBN: 978-1-62708-185-6
... features on workpiece surfaces. Parts such as gears, hubs, and hexagonal shapes have traditionally been difficult to produce by conventional forging because die-workpiece friction made it difficult to fill tight spots properly on the dies. Workpiece Materials Any material, ferrous or nonferrous...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006689
EISBN: 978-1-62708-210-5
... applications B491/B491M-15 3003, 3102 Extruded tubes and cold-drawn tubes JIS H 4080 3003, 3021, 3102, 3103, 3203 Finstock EN 683 3003, 3103 Foil JIS H 4160 3003, 3004 Foil EN 546 3003, 3005, 3103 Forgings, hand forgings, and rolled ring forgings B247-15 3003 Rivet and cold...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006718
EISBN: 978-1-62708-210-5
.... Direct Forge 6069: Age-Hardenable Aluminum Alloy , Alloy Digest: Data on Worldwide Metals and Alloys , Data Sheet Al-374, ASM International , July 2001 2. Nonferrous Alloy, AIWT on Al-6069 , Aerospace Structural Metals Handbook , National Technical Information Service 3. Bergsma...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
...Abstract Abstract This article discusses the forging processes and equipment and forging practice associated with the forging of magnesium alloys. It describes the workability of magnesium alloys. The article concludes with a discussion on the inspection of magnesium alloy forgings...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006086
EISBN: 978-1-62708-175-7
... and steel powder producers in North America, which have developed a wide spectrum of elemental and prealloyed powders designed for specific needs of PM and powder forging applications. The production of nonferrous powders is covered in this Section. Copper and copper-base powders, aluminum powders...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003979
EISBN: 978-1-62708-185-6
... is that it can be done at any time; it need not be a part of the forging sequence, and no reheating of the forgings is needed. Hot Trimming Hot trimming is done at temperatures as low as 150 °C (300 °F) for nonferrous alloys and as high as 980 °C (1800 °F) or above for steels and other ferrous alloys...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005834
EISBN: 978-1-62708-167-2
.... Problems of this type were most severe in melting of nonferrous metals. Ring melting furnaces were all but superseded in the early 1900s by the work of Edwin F. Northrup, who designed and built equipment consisting of a cylindrical crucible and a high-frequency spark-gap power generator. Northrup ( Fig...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
..., and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes. alpha-beta titanium alloys computer simulation dual-alloy processing dual-microstructure processing fine-grain processing hybrid-structure processing nickel-base superalloys nonferrous...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... forging; roll forging (reducer rolling); extrusion; ring rolling; and so forth. A large portion of forged material is steel with nonferrous materials such as aluminum, titanium, and superalloys contributing to more niche markets. Therefore, the selection of lubricants and lubrication techniques depends...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005596
EISBN: 978-1-62708-174-0
... environment. In some instances, an increased corrosion rate occurs near the weld. Nonferrous Aluminum-Base Alloys Aluminum alloys are commonly joined by friction welding. For inertia welding, rotational forging will form flow lines with radial patterns, as opposed to the straight flow patterns...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
...-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation. accuracy incremental forging metal forming metal products metal...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
...). Microstructure The microstructure of forged aluminum alloys is typical of many nonferrous metals. The structure observed is usually an equiaxed grain structure with some coarse precipitates visible at fairly low magnification. After the proper heat treatment, fine precipitates can often be observed...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
...Abstract Abstract Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... for heating of billets, bars, slabs, blooms, tubes, plates, rods, and other components made of both ferrous and nonferrous metals ( Ref 3 ). Induction heating A basic challenge in induction heating of forging stock is the necessity to provide the required “surface-to-core” temperature uniformity. Due...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
...Abstract Abstract Titanium alloys are forged into a variety of shapes and types of forgings, with a broad range of final part forging design criteria based on the intended end-product application. This article begins with a discussion on the classes of titanium alloys, their forgeability...
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003978
EISBN: 978-1-62708-185-6
... than in closed-die forging. Flat dies are usually not preheated (forgings composed of aluminum and nonferrous alloys are the exception). Swage or V-dies, if they have become completely cold (as from a weekend shutdown), are sometimes warmed, particularly for hammer operations. Die heating or warming...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... for forging is discussed in the Sections “Forging of Carbon, Alloy, and Stainless Steels and Heat-Resistant Alloys” and “Forging of Nonferrous Metals” in this Volume. Preventing the formation of scale during heating or removing the scale between heating and upsetting will result in longer die life...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
... typically have been designed for specialized applications. Nonferrous materials, such as superalloys, TZM molybdenum, and cemented carbides, are also sometimes used for severe applications. Table 3 compares service temperatures of die materials used in forging operations. Typical service temperature...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered. carbonitriding carburizing cold working failure analysis furnaces hardenability nonferrous alloys quenching stress stainless steel tempering...