1-20 of 227 Search Results for

nonferrous filler metal

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001386
EISBN: 978-1-62708-173-3
...Abstract Abstract Furnace brazing is a mass production process for joining the components of small assemblies with a metallurgical bond, using a nonferrous filler metal as the bonding material and a furnace as the heat source. This article presents the advantages and limitations of the furnace...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006529
EISBN: 978-1-62708-207-5
... to copper, and aluminum to other nonferrous metals. It also discusses post-braze processes in terms of post-braze heat treatment and finishing. The article concludes with information on the safety precautions considered in brazing aluminum alloys. aluminum alloys brazing brazing filler metals dip...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005345
EISBN: 978-1-62708-187-0
... on the surface preparation, weld repair process selection, joint selection, filler metal selection, weld repair considerations, deposition techniques, postweld heat treatment, and verification of weld repair quality. castings ferrous materials filler metal selection nonferrous materials postweld heat...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
... 5 1 11 2–3 5 14 10 20 3–4 10 20 15 27 4–5 11 23 15 27 5–6 11 21 10 20 6–7 8 17 4 12 7–25 bal bal bal bal Abstract Abstract Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005856
EISBN: 978-1-62708-167-2
... almost instantly when exposed to oxygen. The importance of cleanliness cannot be overemphasized to ensure sound soldered joints. Soldered and brazed joints are both accomplished by using a nonferrous filler metal that melts below the temperature of the base metals (i.e., the metals to be joined...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... and titanium alloys. cast irons dip brazing filler metals furnace brazing induction brazing nonferrous metals resistance brazing stainless steels steels torch brazing Selection of Brazing Processes and Filler Metals BRAZING comprises a group of joining processes in which coalescence...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... and titanium alloys. cast irons dip brazing filler metals furnace brazing induction brazing nonferrous metals resistance brazing stainless steels steels torch brazing BRAZING comprises a group of joining processes in which coalescence is produced...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... in that nonferrous filler metals are used, and bonding is achieved without melting the base metal. Braze welding resembles welding because it can be used for filling grooves and for building up fillets as required. Electron Beam Welding ELECTRON BEAM WELDING (EBW) is a high-energy-density fusion process...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... substitute for OFW. Braze welding resembles brazing in that nonferrous filler metals are used, and bonding is achieved without melting the base metal. Braze welding resembles welding because it can be used for filling grooves and for building up fillets as required. The advantages of HF welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001344
EISBN: 978-1-62708-173-3
... ). Brazing comprises a group of joining processes in which coalescence is produced by heating to a suitable temperature above 450 °C (840 °F) and by using a ferrous or nonferrous filler metal that must have a liquidus temperature above 450 °C (840 °F) and below the solidus temperature(s) of the base metal(s...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... Brazing fluxes Classification Form Filler metal type Typical ingredients Application Activity temperature range Recommended base metals °C °F FB3-A Paste BAg and BCuP Borates, fluorides General-purpose flux for most ferrous and nonferrous alloys. (Notable exception aluminum bronze...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... (750–1110 °F) or to 1000 °C (1830 °F) with 60/40 brass filler (bronze welding). Preheat to avoid hard, brittle deposit. Difficult to machine unless preheated. Prone to cracking—cool slowly and/or stress relieve at 600 °C (1110 °F) when hot. Can also peen when red hot Complications in weld-metal...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
... processes. It discusses the categories of hardfacing alloy, such as build-up alloys, metal-to-metal wear alloys, metal-to-earth abrasion alloys, tungsten carbides, and nonferrous alloys. A summary of the selection guide for hardfacing alloys is presented in a table. The article describes the procedures...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
... filler; 3-pass metal inert gas weld. (b) Alloy 2219-T87 base metal with alloy 2319 filler; 2-pass tungsten inert gas weld. (c) Alloy 7039-T651 base metal with alloy 5183 filler; 2-pass tungsten inert gas weld. SCE, saturated calomel electrode. Source: Ref 4 Fig. 3 Welded assemblies...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001389
EISBN: 978-1-62708-173-3
... that contribute to high quality in an RB joint. The article discusses the classification of RB such as manual RB or automatic RB. It describes the selection of metal electrodes and filler metals for RB. The filler metals include silver alloys, aluminum-silicon alloys, and copper-phosphorus alloys. aluminum...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... , or argon-CO 2 Nonferrous metals; carbon, low-alloy, and high-alloy steels 1 mm (0.04 in.) and upward Positional welding of relatively thin carbon or alloy steel Gas welding Oxyacetylene flame … Manual; metal melted by flame and filler wire fed in separately Gas (CO, H 2 , CO 2 , H 2 O) Carbon...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001476
EISBN: 978-1-62708-173-3
... (carbon steels, cast irons, and stainless steels) and nonferrous (titanium) base metals. arc welding base metal weldability carbon steels cast irons oxyfuel welding repair welding stainless steels structural failures titanium weld defects weld repairs REPAIR AND MAINTENANCE of parts...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003831
EISBN: 978-1-62708-183-2
.... Selected References Selected References • NACE Corrosion Engineers Handbook , 3rd ed. , NACE International , 2002 Silver-Base Braze Alloys Copper-Base Filler Metals Nickel-Base Filler Metals Aluminum-Base Filler Metals Manganese-Base Filler Metals Precious-Metal-Base Filler...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001358
EISBN: 978-1-62708-173-3
... be used on most ferrous and nonferrous materials. With steels, it is principally applied to make outside corner welds on thinner-gage materials, where no filler metal is used. A good fit-up is required, and a fluxing agent is often used to promote better welds. The resulting welds arc smoother...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
...Abstract Abstract Nonferrous metals and alloys are widely used to resist corrosion. This article describes the corrosion behavior of the most widely used nonferrous metals, such as aluminum, copper, nickel, and titanium. It also provides information on several specialty nonferrous products...