1-20 of 2846

Search Results for nonferrous

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0005549
EISBN: 978-1-62708-162-7
...Abbreviations and Symbols Greek Alphabet Tradenames ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Copyright © 1990 ASM International® ASM Handbook Committee, p 1273-1277 All rights reserved. DOI: 10.31399/asm.hb.v02.a0005549...
Book Chapter

By David V. Neff
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... Abstract Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
... lead alloys nickel alloys non-ferrous alloys titanium alloys copper drossing softening desilvering CASTING OF NONFERROUS ALLOYS on a tonnage basis is dominated by aluminum, which is cast by ingot and continuous processes for primary mills and by all foundry (shape casting) processes...
Book

Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.9781627081696
EISBN: 978-1-62708-169-6
Book Chapter

Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005185
EISBN: 978-1-62708-186-3
Book Chapter

Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004044
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... processing. It concludes with a discussion on computer simulation of advanced TMP processes. alpha-beta titanium alloys computer simulation dual-alloy processing dual-microstructure processing fine-grain processing hybrid-structure processing nickel-base superalloys nonferrous alloys retained...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... Abstract Weldability refers to the ease of welding a material under the imposed fabrication conditions to perform satisfactorily during service. This article is a comprehensive collection of tables that summarize the general weldability of cast irons, steels, nonferrous metals, and their alloys...
Book Chapter

By Alexey Sverdlin, Steven Lampman
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... Abstract This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys...
Book Chapter

Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
... Abstract This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain...
Book Chapter

Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003623
EISBN: 978-1-62708-182-5
.... It also reviews the considerations for selected nonferrous alloy systems such as aluminum, titanium, tantalum, and nickel. corrosion resistance alloy composition shielding molten hot metal surface welding parameter weldments nonferrous alloy system aluminum titanium tantalum nickel...
Book Chapter

By Thomas S. Piwonka
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... Abstract Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... Abstract This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... Abstract This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003181
EISBN: 978-1-62708-199-3
... Abstract This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys, nickel...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001423
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the physical metallurgy of nonferrous high-temperature materials that affects weldability on the precipitates used for age hardening (strain-age cracking). Those precipitates associated with solidification and solidification segregation, primarily Laves...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001424
EISBN: 978-1-62708-173-3
... Abstract This article provides an overview of the types of postweld heat treatment processes carried out in solid-solution-strengthened and precipitation-strengthened nonferrous high-temperature nickel and cobalt alloys. nonferrous high-temperature materials postweld heat treatment...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001427
EISBN: 978-1-62708-173-3
... Abstract Improvement in the corrosion performance of a component or structure can be achieved through proper design, surface protection, proper material selection, or combinations of all three parameters. This is an introductory article on the selection of nonferrous corrosion-resistant...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... Abstract This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available...