Skip Nav Destination
Close Modal
Search Results for
nonequilibrium freezing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 68 Search Results for
nonequilibrium freezing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006226
EISBN: 978-1-62708-163-4
... Abstract Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing...
Abstract
Similar to the eutectic group of invariant transformations is a group of peritectic reactions, in which a liquid and solid phase decomposes into a solid phase on cooling through the peritectic isotherm. This article describes the equilibrium freezing and nonequilibrium freezing of peritectic alloys. It informs that peritectic reactions or transformations are very common in the solidification of metals. The article discusses the formation of peritectic structures that can occur by three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt. It provides a discussion on the peritectic structures in iron-base alloys and concludes with information on multicomponent systems.
Image
Published: 01 December 1998
Fig. 15 Portion of a binary phase diagram containing a two-phase liquid-plus-solid field illustrating (a) application of the lever rule to (b) equilibrium freezing, (c) nonequilibrium freezing, and (d) heating of a homogenized sample. Source: Ref 1
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001338
EISBN: 978-1-62708-173-3
... Abstract The process of solidification is the same in all cases, whether it is the freezing of water on a windshield or in a freezer or the solidification of metal in a casting or in the weld that joins two solids. This article discusses the solidification of alloy welds and provides...
Abstract
The process of solidification is the same in all cases, whether it is the freezing of water on a windshield or in a freezer or the solidification of metal in a casting or in the weld that joins two solids. This article discusses the solidification of alloy welds and provides a comparison of casting and welding solidification. The constitutional supercooling model for describing weld solidification is presented because it qualitatively describes the evolution of different weld microstructures. The article describes the welding rate effect on weld pool shape and microstructure, as well as the nonequilibrium effects.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
... liquidus and solidus phase boundaries. Equilibrium is one extreme of solidification behavior ( Ref 2 , 3 , 4 ). Nonequilibrium Solidification, The Gulliver-Scheil Relation In most commercial casting and welding practices, and for many alloys, equilibrium freezing would not be attained...
Abstract
This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters that control microsegregation are discussed in relation to the manifestations of microsegregation in simple and then increasingly complex alloy systems. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Image
Published: 30 November 2018
Fig. 12 Nonequilibrium eutectic in aluminum-copper alloys. The curve for the Brody and Flemings (B-F) model is calculated by using Eq 3 . The conversion from cooling rate to local solidification time was made for the expected freezing range (130 °C, or 235 °F) of the Al-4.5%Cu alloy.
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... by zones increasingly rich in tin. This phenomenon, known as coring, commonly occurs in the as-cast structure. Another important consequence of this nonequilibrium freezing is the fact that the last liquid present during solidification contains much more tin than the nominal composition of the alloy. Thus...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005226
EISBN: 978-1-62708-187-0
.... Interfacial Nonequilibrium For extremely rapid liquid-solid interface freezing rates (1 m/s velocity, or 3 ft/s), the local interfacial equilibrium assumption breaks down. Solute can be trapped into the freezing solid at levels exceeding the equilibrium value of solid for the corresponding liquid...
Abstract
Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and the formation of noncrystalline phases. It considers three factors to understand the fundamentals of these changes: heat flow, thermodynamic constraints/conditions at the liquid-solid interfaces, and diffusional kinetics/microsegregation. These factors are described in detail.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006496
EISBN: 978-1-62708-207-5
... is on the chemical segregation that occurs during freezing, because it determines the castability of the alloy. The article describes the two types of segregation, namely, microsegregation and macrosegregation. It discusses the effect of freezing range on castability of an alloy. The article lists the freezing range...
Abstract
Castability is a complex characteristic that depends on both the intrinsic fluid properties of the molten metal and the manner in which the particular alloy solidifies. This article discusses the practical aspects of solidification important to aluminum foundrymen. The primary focus is on the chemical segregation that occurs during freezing, because it determines the castability of the alloy. The article describes the two types of segregation, namely, microsegregation and macrosegregation. It discusses the effect of freezing range on castability of an alloy. The article lists the freezing range of a number of important alloys. It concludes with a discussion on castability of 2xx, 3xx, 4xx, 5xx, and 7xx alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
... be calculated from the bulk composition of the alloy and compositions of the conjugate phases, as shown in Fig. 15 (a). Fig. 15 Portion of a binary phase diagram containing a two-phase liquid-plus-solid field illustrating (a) application of the lever rule to (b) equilibrium freezing, (c) nonequilibrium...
Abstract
Alloy phase diagrams are useful for the development, fabrication, design and control of heat treatment procedures that will produce the required mechanical, physical, and chemical properties of new alloys. They are also useful in solving problems that arise in their performance in commercial applications, thus improving product predictability. This article describes different equilibrium phase diagrams (unary, binary, and ternary) and microstructures, description terms, and general principles of reading alloy phase diagrams. Further, the article discusses plotting schemes; areas in a phase diagram; and the position and shapes of the points, lines, surfaces, and intersections, which are controlled by thermodynamic principles and properties of all phases that comprise the system. It also illustrates the application of the stated principles with suitable phase diagrams.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006224
EISBN: 978-1-62708-163-4
... been slowly cooled under equilibrium conditions. As rapid cooling continues through T 3 and T 4 , the same processes occur, and the average composition follows the nonequilibrium solidus determined by points α 1 , α′ 2 , α′ 3 , and so forth. At T 7 , freezing is complete and the average...
Abstract
The term isomorphous refers to metals that are completely miscible in each other in both the liquid and solid states. This article discusses the construction of simple phase diagrams by using the appropriate points obtained from time-temperature cooling curves. It describes the two methods to determine a phase diagram with equilibrated alloys: the static method and the dynamic method. The article illustrates the construction of phase boundaries according to the Gibbs' phase rule and describes the calculation methods that allow the prediction of the phases present, the chemical compositions of the phases present, and the amounts of phases present. Phase diagrams provide useful information for understanding alloy solidification. The article provides two simple models that can describe the limiting cases of solidification behavior.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003171
EISBN: 978-1-62708-199-3
... to reach the areas where solidification is occurring. As a result, tiny micropores form between the equiaxed grains. This condition is known as microporosity. Effects of Nonequilibrium Conditions The discussion to this point has assumed that solidification takes place under equilibrium conditions...
Abstract
Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005222
EISBN: 978-1-62708-187-0
... on solidification for these metals is in the range of 3.2 to 7.2%. The solidification shrinkage for the less closely packed body-centered cubic lattice is in the range of 2 to 3.2%. The exceptions to this general pattern are those materials that expand on freezing. These include cerium, silicon, and bismuth...
Abstract
This article provides a detailed discussion on the causes of formation of shrinkage porosity and gas porosity along with the methods involved in eliminating them. It discusses the process of porosity formation and the factors affecting porosity formation, including alloy composition, external pressure, and cooling conditions.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005206
EISBN: 978-1-62708-187-0
... diagrams provide useful information for understanding the solidification of alloys. In addition to the liquidus and final freezing temperatures, important quantities for the mathematical treatment of solidification processes are obtained from the phase diagram. The ratio of the concentrations...
Abstract
This article discusses the application of thermodynamic in the form of phase diagrams for visually representing the state of a material and for understanding the solidification of alloys. It presents the derivation of the relationship between the Gibbs energy functions and phase diagrams, which forms the basis for the calculation of phase diagrams (CALPHAD) method. The article also discusses the calculation of phase diagrams and solidification by using the Scheil-Gulliver equation.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
...-time annealing at temperatures high enough to austenitize a specimen produces a microstructure free of nonequilibrium constituents (in particular, bainite, martensite, and the massive and Widmanstätten ferrite) that obscure the original dendritic structure. The original columnar dendrites (light...
Abstract
The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before and during solidification is also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005228
EISBN: 978-1-62708-187-0
... and shrinkage porosity, fragmentation of dendrites, the as-cast grain size, grain shapes, and crystallographic texture. Even the detailed distributions of second-phase particles, including equilibrium and nonequilibrium precipitates, as well as the dispersion of mold wall particles and dross are affected...
Abstract
Gravity has profound influences on most solidification and crystal growth processes. Modification of gravity over practical time scales for the purposes of modifying or controlling solidification proves to be a far more daunting and expensive technological challenge. This article discusses various microgravity solidification experiments that involve pure metals, alloys, and semiconductors and presents the official NASA acronyms for them. MEPHISTO, TEMPUS, the isothermal dendritic growth experiment, and advanced gradient heating facility, are also discussed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003723
EISBN: 978-1-62708-177-1
... “Nonequilibrium Phase Nucleation and Growth” in this article. More advanced material is also included here on phase transformations in steels, still the most common of all commercial metal alloys. It is hoped that both the beginner and the more advanced practitioner of metallography should be able to advance...
Abstract
This article introduces basic physical metallurgy concepts that may be useful for understanding and interpreting variations in metallographic features and how processing affects microstructure. It presents some basic concepts in structure-property relationships. The article describes the use of equilibrium binary phase diagrams as a tool in the interpretation of microstructures. It reviews an account of the two types of solid-state phase transformations: isothermal and athermal. The article discusses isothermal transformation and continuous cooling transformation diagrams which are useful in determining the conditions for proper heat treatment (solid-state transformation) of metals and alloys. The influence of the mechanisms of phase nucleation and growth on the morphology, size, and distribution of grains and second phases is also described.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003616
EISBN: 978-1-62708-182-5
..., glassy metals have been formed by very rapid cooling on the order of ∼10 6 K/s (2 × 10 6 °F/ s) during the solidification of a melt. This “freezes” the atoms almost instantly in nearly the same positions they occupied in the liquid state. There is insufficient time available during the solidification...
Abstract
The corrosion behavior of a metal or alloy is determined by its composition and structural features, the environment and stresses to which it is exposed, and the behavior of any corrosion products generated. This article provides a detailed discussion on the fundamentals of pure metals, impure metals, and alloys. It highlights the ways in which the metallurgical variables, namely, composition and structure, influence the corrosion properties of metals and alloys in aqueous environment.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006250
EISBN: 978-1-62708-169-6
Abstract
This article introduces the mechanism of diffusion and the common types of heat treatments such as annealing and precipitation hardening, which are applicable to most ferrous and nonferrous systems. Three distinct processes occur during annealing: recovery, recrystallization, and grain growth. The article also describes the various types of solid-state transformations such as isothermal transformation and athermal transformation, resulting from the heat treatment of nonferrous alloys. It provides information on the homogenization of chemical composition within a cast structure.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001095
EISBN: 978-1-62708-162-7
... point, an under-cooled liquid undergoes configurational freezing. The viscosity (η) of the liquid rises rapidly with falling temperature in this temperature range to values normally associated with the solid state. An example is shown in Fig. 1(a) . For a typical liquid metal, viscosities are measured...
Abstract
Metallic glasses can be prepared by solidification of liquid alloys at cooling rates sufficient to suppress the nucleation and growth of competing crystalline phases. This article presents a historical survey of the study of metallic glasses and other amorphous metals and alloys. This includes a discussion of synthesis and processing methods, structure and morphology, and a description of the electronic, magnetic, thermodynamic, chemical, and mechanical properties of metallic glasses. In addition, the article describes the development of metallic glasses as materials for technical applications.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
... at which freezing begins during cooling or, equivalently, at which melting is completed on heating. The lower curve, called the solidus, indicates the temperatures at which melting begins on heating or at which freezing is completed on cooling. Above the liquidus every alloy is molten, and this region...
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
1