Skip Nav Destination
Close Modal
Search Results for
nonequilibrium Gulliver-Scheil solidification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Search Results for nonequilibrium Gulliver-Scheil solidification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
... Abstract This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters...
Abstract
This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters that control microsegregation are discussed in relation to the manifestations of microsegregation in simple and then increasingly complex alloy systems. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005206
EISBN: 978-1-62708-187-0
... diagrams, which forms the basis for the calculation of phase diagrams (CALPHAD) method. The article also discusses the calculation of phase diagrams and solidification by using the Scheil-Gulliver equation. phase diagram solidification Gibbs energy function CALPHAD method Scheil-Gulliver equation...
Abstract
This article discusses the application of thermodynamic in the form of phase diagrams for visually representing the state of a material and for understanding the solidification of alloys. It presents the derivation of the relationship between the Gibbs energy functions and phase diagrams, which forms the basis for the calculation of phase diagrams (CALPHAD) method. The article also discusses the calculation of phase diagrams and solidification by using the Scheil-Gulliver equation.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006257
EISBN: 978-1-62708-169-6
... software is used to predict the nonequilibrium solidification range of the alloy. Specifically, the Scheil module in the commercial software package is an implementation of the Scheil-Gulliver model ( Ref 5 , 6 ), and, in this case, assumes that diffusion occurs infinitely fast within the liquid phase...
Abstract
Homogenization heat treatment can be useful for improving the performance and life of an alloy while in service or for improving the processability during fabrication and hot working. This article describes the identification of incipient melt point, slowest-diffusing elements, and microstructural scale for homogenization of metal alloys. It also discusses the CALPHAD software to optimize the homogenization heat treatment and the Scheil module of the commercial thermodynamic modeling software.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006224
EISBN: 978-1-62708-163-4
... ) f S In comparison, for solidification following the Scheil-Gulliver path (for convenience, here called the Scheil path), no diffusion in the solid and complete diffusion in the liquid are assumed. This case, where thermodynamic equilibrium exists only as local equilibrium at the liquid...
Abstract
The term isomorphous refers to metals that are completely miscible in each other in both the liquid and solid states. This article discusses the construction of simple phase diagrams by using the appropriate points obtained from time-temperature cooling curves. It describes the two methods to determine a phase diagram with equilibrated alloys: the static method and the dynamic method. The article illustrates the construction of phase boundaries according to the Gibbs' phase rule and describes the calculation methods that allow the prediction of the phases present, the chemical compositions of the phases present, and the amounts of phases present. Phase diagrams provide useful information for understanding alloy solidification. The article provides two simple models that can describe the limiting cases of solidification behavior.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005237
EISBN: 978-1-62708-187-0
... in alloy 718. These calculations indicate a realistic nonequilibrium solidus of approximately 1170 °C (2140 °F), compared to a nonequilibrium solidus of < 1000 °C (1830 °F) as predicted by Scheil-type solidification. (See the article “Thermodynamics and Phase Diagrams” in this Volume for a discussion...
Abstract
In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates the simulation of macrosegregation and microsegregation.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005209
EISBN: 978-1-62708-187-0
... equation modified by a function of the Fourier number ( Ref 9 , 10 ). For D → ∞ and D s → 0, the final transient is already present at the very beginning of solidification, and the concentration variation with solid fraction, f s , follows the Gulliver-Scheil equation: (Eq 7) C s kC...
Abstract
One impressive example of plane front solidification (PFS) is the industrial production of large silicon single crystals, used mainly as substrates for integrated circuits. This article explores the PFS of a single phase, without taking convection into account. It discusses the solute build-up at the solid-liquid interface forming transients and steady state, the morphological stability/instability and perturbation theory, and rapid solidification effects, including solute trapping and oscillatory instabilities. The article presents a microstructural selection map that presents an overview of interface stability as a function of composition for a given alloy.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... , Ref 73 , Ref 74 ). Commercial software can provide a description of the microsegregation and solidification paths for the limiting cases of equilibrium (Lever rule), no diffusion in the solid (Gulliver-Scheil approximation), and their derivation based on partial equilibrium ( Ref 68 , 71 , 72...
Abstract
This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005524
EISBN: 978-1-62708-197-9
... and cooling rates A multicomponent thermodynamic phase diagram can be calculated using computational thermodynamics tools, and this information can be used to predict the first phase to form from liquid during welding ( Ref 116 , 117 , 118 ). Using Scheil-Gulliver calculations, the nonequilibrium...
Abstract
This article provides an overview of integrated weld modeling and presents strategic goals for the welding industry. It discusses the fundamentals of the underlying physics and the methodologies to solve the same. The article presents the pioneering work done to predict the heat-affected zone and weld metal microstructure in the early 1980s and 1990s. Applications of computational thermodynamics and kinetics tools to weld metal microstructure prediction for liquid-gas reactions and liquid-slag reactions that happen as a function of high-to-low temperature during fusion welding are discussed. The article also includes a brief discussion on weldability prediction, residual stress prediction, and distortion prediction. It concludes with information on the use of optimization methodologies.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005517
EISBN: 978-1-62708-197-9
... the so-called Scheil-Gulliver (SG) solidification model, none of the requisite physical properties can be provided. The aim of this section is first to describe the SG model, then to show how the link with physical properties can be made, and finally to demonstrate its use for some aluminum casting...
Abstract
This article presents the background to the CALculation of PHAse Diagrams (CALPHAD) method, explaining how it works, and how it can be applied in industrial practice. The extension of CALPHAD methods as a core basis for the modeling of generalized material properties is explored. It informs that one of the aims of CALPHAD methods has been to calculate phase equilibria in the complex, multicomponent alloys that are used regularly by industry. The article discusses the application of CALPHAD calculations to industrial alloys. Modeling of general material properties, such as thermophysical and physical properties, temperature- and strain-rate-dependent mechanical properties, properties for use in the modeling of quench distortion, and properties for use in solidification modeling, is also reviewed. The article also describes the linking of thermodynamic, kinetic, and material property models.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005561
EISBN: 978-1-62708-174-0
... thermodynamic phase diagram can be calculated using computational thermodynamics tools, and this information can be used to predict the first phase to form from liquid during welding ( Ref 116 , Ref 117 , Ref 118 ). Using Scheil-Gulliver calculations, the non-equilibrium solidification range as well...
Abstract
This article provides an overview of integrated weld modeling and discusses the fundamentals of the underlying physics and methodologies involved in process modeling. It presents approaches for microstructure modeling that help to predict phase fractions as well as grain size in the heat-affected zone and weld metal region as a function of alloy composition and thermal cycles. The article discusses the uses of computational thermodynamic and kinetic tools. It describes the concept of performance modeling, whose goal relates to the prediction of weldability, geometrical distortion, and/or locked-in residual stress as a function of material, restraint, process, and process parameters as well as service temperature. Finally, the article presents a case study, evaluating the use of X-65 steels using the E-WeldPredictor tool.