1-18 of 18 Search Results for

noncyanide copper plating baths

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001242
EISBN: 978-1-62708-170-2
... noncyanide copper plating baths Table 2 Concentration limits and operating conditions of alkaline noncyanide copper plating baths Constituent or condition Typical Copper metal (from copper sulfate) concentration limit, g/L (oz/gal) 6–13.5 (0.8–1.8) pH, electrometric 9.0–10.5...
Book Chapter

By A. Sato
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
...Abstract Abstract Commercial zinc plating is accomplished by a number of distinctively different systems: cyanide baths, alkaline noncyanide baths, and acid chloride baths. This article focuses on the composition, advantages, disadvantages, operating parameters, and applications of each...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005778
EISBN: 978-1-62708-165-8
... carburized and noncarburized areas is required, the use of copper plate or copper-base paint is unnecessary. Oxidation of the work at the bath surface can be reduced if the parts are initially immersed an inch or two deeper than required, to coat them with salt, and are then withdrawn to the required...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001247
EISBN: 978-1-62708-170-2
... are required when current density is high (above 215 A/m 2 , or 20 A/ft 2 ). Concentration of commercial noncyanide cadmium plating baths Table 2 Concentration of commercial noncyanide cadmium plating baths Bath Proprietary (a) Fluoborate (b) Acid sulfate (c) g/L oz/gal g/L oz/gal...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001253
EISBN: 978-1-62708-170-2
... a hot-cyanide alloy (color) bath. The deposit is usually applied over a bright nickel deposit. Occasionally, the gold is flash plated over a palladium deposit over a bright acid-copper deposit, where nickel-free deposits are desired. (The European Common Market is concerned about nickel dermatitis from...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... electrodeposit. An intermediate layer of copper can significantly improve performance, because copper adheres well to both nickel and zinc. Thus, multiple plated layers are often used to obtain the desired product requirements. This system of layers is referred to as the plating system. Figure 6...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
...Abstract Abstract Selective plating, also known as brush plating, differs from traditional tank or bath plating in that the workpiece is not immersed in a plating solution (electrolyte). Instead, the electrolyte is brought to the part and applied by a handheld anode or stylus, which...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006335
EISBN: 978-1-62708-179-5
...Abstract Abstract Coating of cast irons is done to improve appearance and resistance to degradation due to corrosion, erosion, and wear. This article describes inorganic coating methods commonly applied to cast irons. The coating methods include plating, hot dip coating, conversion coating...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... Abstract Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
...Abstract Abstract Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005784
EISBN: 978-1-62708-165-8
...-pressure abrasive grit blast. The pressure is low to prevent damage to the soft copper, and this slight roughening of the surface promotes a more uniform diffusion of the intended element of carbon, nitrogen, or both. There are many baths used for copper plating, and each has its inherent benefits...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004218
EISBN: 978-1-62708-184-9
... Copper strike bath Copper 18 0.023 0.15 40 4.2×10 −3 Cyanide (CN) 26 0.023 0.15 40 6.1×10 −3 Copper (cyanide) plating bath Copper 20 0.05 0.3 100 3.8×10 −3 Cyanide (CN) 30 0.05 0.3 100 5.6×10 −3 Copper (acid) plating bath Copper 55 0.054 0.35 95 1.3×10 −2...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
...Abstract Abstract This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... to copper alloys. A copper alloy may not always be fully protected against a corrosive environment at the expense of tin. Some corrosion products of tin are more noble than copper and can create the type of galvanic conditions that lead to pitting corrosion. Tin can be plated from alkaline stannate baths...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
... hardening processes described, the resulting property improvements (corrosion and/or wear resistance) will be stressed rather than the details of the process itself (equipment, plating bath compositions, process controls, etc.). Information on the surface engineering of stainless steels, tool steels...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... from Ref 20 Fig. 23 Oxidation, as measured by weight gain, as a function of time for nickel-plated U-0.75Ti in air at 10% relative humidity and 105 °C (220 °F) Fig. 4 Effect of pH on uranium polarization scan behavior in room-temperature, argon-purged solutions. Data from Ref 10...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.9781627081658
EISBN: 978-1-62708-165-8