Skip Nav Destination
Close Modal
Search Results for
noncontact temperature sensors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 85 Search Results for
noncontact temperature sensors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005925
EISBN: 978-1-62708-166-5
... control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation...
Abstract
Temperature control in heat treating is of paramount importance in maintaining the quality and achieving the desired metallurgical results. This article provides a detailed account of the factors affecting temperature control in heat treating furnaces, with information on temperature control systems, including contact sensors, noncontact sensors, controllers, energy-flow regulators, measurement instruments, and set-point programmers. Common contact sensors include temperature scales, thermocouples, and resistance temperature detectors, whereas optical pyrometers and on-line radiation thermometers fall under the noncontact type. The article describes two types of instrumentation used in heat treating: field test instruments for temperature-uniformity surveys and system-accuracy tests; and controlling, monitoring, and recording instruments for digital instrumentation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003239
EISBN: 978-1-62708-199-3
... a test surface Thermometry, which is the measurement of temperature. These techniques are separated into two categories: (a) direct contact, in which a thermally sensitive device or material is placed in physical and thermal contact with the test piece; and (b) noncontact techniques that depend...
Abstract
Thermal inspection comprises all methods in which heat-sensing devices or substances are used to detect irregular temperatures. Inspection of workpieces can be used to detect flaws and undesirable distribution of heat during service. Though there are several methods of thermal inspection and many types of temperature-measuring devices and substances, this article focuses only on thermography, which is the mapping of isotherms, or contours of equal temperature, over a test surface, and on thermometry, which is the measurement of temperature. Thermography techniques can be classified as contact thermographic methods using cholesteric liquid crystals, thermally quenched phosphors, and heat-sensitive paints, and noncontact techniques using hand-held infrared scanners, high-resolution infrared imaging systems, and thermal wave interferometer systems. Contact thermometric inspection devices include bolometers, thermocouples, thermopiles, and meltable substances, whereas radiometers and pyrometers come under the noncontact category.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003199
EISBN: 978-1-62708-199-3
... reduces their usage in the metals industry. Resistance temperature detectors are normally larger in size and slower in response than thermocouples. However, the new thin-film deposited detectors minimize this disadvantage, which characterizes conventional wire-wound detectors. Noncontact Sensors...
Abstract
Control of temperature and furnace atmospheres has become increasingly critical to successful heat treating. Temperature instrumentation and control systems used in heat treating include temperature sensors, controllers, final control elements, measurement instruments, and set-point programmers. This article describes these items and discusses the classifications and control of furnace atmospheres. The article also describes the surface carbon control devices available for the wide variety of furnace atmospheres and evaluation of carbon control. Finally, the article provides a set of guidelines for safety procedures that are common to all industrial heat treating furnace installations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005853
EISBN: 978-1-62708-167-2
..., and hundreds of other applications. The process is fast and usually very easy to control. Of course temperature is a key parameter that needs to be controlled and often recorded for quality records. The choice instrument for measuring temperature is a noncontact infrared (IR) thermometer. Infrared...
Abstract
This article provides an overview of the basic theory of infrared (IR), including emissivity and E slope. It explains how the IR thermometer works, and provides guidance on choosing a thermometer, in particular, deciding between a two-color and a single-wavelength thermometer and installing and maintaining them. The article discusses typical applications of induction heating, and describes how the IR thermometer controls the temperature. While the majority of the article discusses spot thermometers, thermal imagers, which are fast and are used for both research and control of the induction process, are also addressed.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
..., which introduced a real-time, image-based, noncontact approach to temperature measurement—a welcome alternative to point temperature sensors attached to the surface of the part, or temperature-sensitive paints or tapes that had been used previously. In TNDE, applied external excitation acts...
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
... machines or noncontact visual sensors with image analysis capabilities. The type of techniques and equipment required to perform a dimensional inspection depends on a number of factors, such as the size and shape of the part, speed of inspection/automation, tolerance requirements, portability...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006968
EISBN: 978-1-62708-439-0
... main categories: thermal/temperature-monitoring devices, optical devices, acoustic and vibration sensors, 3D scanning devices, and others ( Table 1 ). These devices can also be classified by the monitoring objective, such as printing (top)-surface-monitoring sensors, part-monitoring sensors...
Abstract
Additive manufacturing (AM) is a revolutionary technology that fabricates parts layerwise and provides many advantages. This article discusses polymer AM processes such as material extrusion, vat photopolymerization (VPP), powder-bed fusion (PBF), binder jetting (BJ), material jetting (MJ), and sheet lamination (SL). It presents the benefits of online monitoring and process control for polymer AM. It also introduces the respective monitoring devices used, including the models and algorithms designed for polymer AM online monitoring and control.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006978
EISBN: 978-1-62708-439-0
... for the laser controller or motors (robot control or recoater blade). Environmental sensors report on the temperature, oxygen level, pressure, and gas flow in the build chamber or in the vicinity of the build process. These basic sensors evaluate a range of key process parameters ( Ref 4 ) and provide...
Abstract
In situ process monitoring includes any technologies that monitor or inspect during an additive manufacturing (AM) process. This article presents the types, process considerations, and challenges of in situ monitoring technologies that can be implemented during an AM process. The types include system health monitoring, melt pool monitoring, and layer monitoring. The article discusses data analysis, and provides an overview of the integration of sensors into AM machines.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006409
EISBN: 978-1-62708-192-4
... case dependent. For some analytical expressions of α, the reader is referred to Ref 3 and 6 . Frictional Heating Measurements (Dry Contact) Many techniques are available for measuring the temperature that results from frictional heating. Both contact- and noncontact-type sensors can be used...
Abstract
This article provides an overview of experimental, analytical, and numerical tools for temperature evaluation of dry and lubricated systems. It describes the analytical methods and numerical techniques for frictional heating and temperature estimation, as well as viscous heating in full-film lubrication. The article also discusses the viscous heating temperature measurements and numerical analysis of viscous heating.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005638
EISBN: 978-1-62708-174-0
...). The weld bead temperature can be measured with a near-infrared sensor, which can help assess weld quality. Spatter generated from the laser weld process also can be monitored for process consistency and stability with a near-infrared sensor. Grouping the various radiative emissions from the keyhole...
Abstract
This article reviews weld quality monitoring considerations for two automotive materials, steel and aluminum, with a focus on photosensor technology. It provides an overview of the process description, process parameters, and weld characteristics of laser welding. The article discusses real-time or in-process monitoring, which is done with optical, acoustic, and/or charged-particle sensors. It highlights the advantages, applications, and selection criteria of weld monitoring system and concludes with examples of laser weld monitoring in the production of tailor-welded blanks.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005553
EISBN: 978-1-62708-174-0
... or a noncontact method employing either an infrared (IR) point source or a vision-based digital IR camera. Temperature distribution sensing methods involve certain disadvantages. Thermocouples, in particular, require intimate contact with the weldment at all times, while IR systems require calibration...
Abstract
This article provides an overview of the methods used to control aspects of the arc welding process and research associated with the development of closed-loop feedback control of the process. Successful implementation of a closed-loop feedback control system requires sensing, modeling, and control. The article describes the commonly applied sensing techniques for arc welding control: arc sensing and nonimaging and imaging optics. It reviews the physics-based, empirically-derived, and neural network models for arc welding control. The article also discusses the research and development activities that attempt to extend the commercial, welding process controllers, namely, adaptive control, intelligent control, multivariable control, and distributed, hierarchical control.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005514
EISBN: 978-1-62708-197-9
..., and the temperature fluctuations (θ) about the mean are measured. Knowing the mass of the sample, m , the power, P , and the frequency of the modulation of the heat source, ω: (Eq 2) C p = P / ( m · θ · ω ) Details are given in Ref 12 and Ref 14 Modern variants are noncontact...
Abstract
The measurement of thermophysical properties of metal alloys, especially at high temperatures, is difficult because of the reactivity of some alloys. This article reviews the methods available for measurement of thermal and other physical properties for liquid, semi-solid, and solid commercial alloys, including adiabatic calorimetry, modulated calorimetry, Calvet calorimetry, single-pan calorimetry, and drop calorimetry. It describes differential scanning calorimetry and differential temperature analysis for measuring transition temperatures such as phase transformation or glass transition temperatures. The article schematically illustrates the laser flash apparatus for measuring the thermal diffusivity of solids and oscillation viscometer for measurements of the viscosity of metals. A summary of the measurement methods is presented in tables.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003198
EISBN: 978-1-62708-199-3
...- CONTROL SYSTEMS used in heat treating in- response. A resistance thermometer is more accu- type sensors. Their electrical resistance is propor- clude temperature sensors, controllers, final con- rate and stable than a thermocouple. However, tional to temperature...
Abstract
Batch furnaces and continuous furnaces are commonly used in heat treating. This article provides a detailed account of various heat treating equipment and its furnace types, including salt bath equipment (externally heated, immersed-electrode and submerged-electrode furnaces), and fluidized-bed equipment (external-resistance-heated fluidized beds). It describes various auxiliary equipment used in cold-wall furnaces, namely, heating elements and pumping systems. Five types of heat-resistant alloys are used for furnace parts, trays, and fixtures: Fe-Cr alloys, Fe-Cr-Ni alloys, Fe-Ni-Cr alloys, nickel-base alloys and cobalt-base alloys. The article lists the recommended applications for alloys for parts and fixtures for various types of heat treating furnaces.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006858
EISBN: 978-1-62708-392-8
..., as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing...
Abstract
Three-dimensional plotting of biomaterials (also known as bioprinting) has been a major milestone for scientists and engineers working in nanobiotechnology, nanoscience, and nanomedicine. It is typically classified into two major categories, depending on the plotting principle, as contact and noncontact techniques. This article focuses on the working principles of contact and noncontact printing methods along with their advantages, disadvantages, applications, and challenges. Contact printing methods include micro-plotter, pen printing, screen printing, nanoimprint printing, flexography printing, and gravure printing. Noncontact printing methods include extrusion printing, droplet printing, laser-based polymerization, and laser-based cell transfer. The wide variety of printable biomaterials, such as DNA, peptides, proteins, lipids, and cells, also are discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007023
EISBN: 978-1-62708-439-0
... in-process control. The metal AM processes L-PBF and DED work at elevated temperatures; therefore, contactless NDT technologies are considered the most appropriate option to operate under these conditions. Taking advantage of the layer-by-layer build method, IPI offers an ideal way to verify part quality...
Abstract
This article covers defect formation and classification, followed by a brief description of the most common nondestructive testing (NDT) methods used for postbuild inspection. Descriptions of the established and emerging NDT techniques for in-process monitoring (IPM) and in-process inspection (IPI) in additive manufacturing (AM) also are provided, highlighting the advantages and limitations. The article concludes with a list of the main NDT methods and techniques used. As qualification and certification of AM parts is an urgent matter for the AM industry, a description of the current work carried out for developing standards is also included.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... treatment, and postprocessing HIP to eliminate defects detrimental to properties from the as-built condition. The use of noncontact thermal, optical, and ultrasound techniques for inspecting AM components are also considered. The final section summarizes the knowledge gap in our understanding of the defects...
Abstract
The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process parameters specific to the alloy system and selected processing technique. This article discusses the formation of defects within metal additive manufacturing, namely fusion-based processes and solid-state/sintering processes. Defects observed in fusion-based processes include lack of fusion, keyhole collapse, gas porosity, solidification cracking, solid-state cracking, and surface-connected porosity. The types of defects in solid-state/sintering processes are sintering porosity and improper binder burnout. The article also discusses defect-mitigation strategies, such as postprocess machining, surface treatment, and postprocessing HIP to eliminate defects detrimental to properties from the as-built condition. The use of noncontact thermal, optical, and ultrasound techniques for inspecting AM components are also considered. The final section summarizes the knowledge gap in our understanding of the defects observed within AM components.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006871
EISBN: 978-1-62708-395-9
... thermometer or a noncontact thermometer (e.g., according to EN 16795, Ref 25 ). If the surface temperatures are not measured directly, white standard or white panel sensors can also be used to better estimate the temperature of lighter-colored samples (e.g., for polyvinyl chloride window profiles; EN 513...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on the performance of polymeric materials, and the accelerated test methods that can be used to investigate those effects. These test methods are used to characterize material performance when subjected to specific, often controlled, and well-defined factors. The article also presents an overview of weathering instrument types that simulate outdoor stress factors.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006898
EISBN: 978-1-62708-392-8
.... The temperature sensor can be fabricated using a polymer-semiconductor ( Ref 48 ). Structures and Working Mechanisms of Energy Harvesters Piezoelectric Nanogenerator Structure and Mechanism In 1880, brothers Jacques and Pierre Curie discovered piezoelectricity. Their experiment was basically on quartz...
Abstract
Additive manufacturing (AM) has been growing as a significant research interest in academic and industry research communities. This article presents flexible and biocompatible energy-harvesting devices using AM technology. First, it discusses material selection for achieving piezoelectricity and triboelectricity. Then, the article highlights the structures of energy harvesters and describes their working mechanisms. Next, it covers the additively manufactured implantable piezoelectric and triboelectric energy harvesters. Further, the article describes the 3D-printed wearable energy harvesters as well as their applications. An overview of additively manufactured self-powered sensors is highlighted. Finally, the article discusses the issues for 3D-printed energy harvesters and their roadmap.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
...) System utilizing a CCD array camera tracking an image with simulated smoke and spatter from a FCAW process Ultrasonic sensors, of both the contacting (piezoelectric crystal) and noncontacting (electromagnetic acoustic transducer) varieties, have been used in the laboratory to evaluate...
Abstract
Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive control system connected through a computer communications interface. This article focuses on the application of intelligent automation system to arc welding, called WELDEXCELL, and other joining processes. An outline of the interface between off-line planners and real-time control systems is also provided.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003267
EISBN: 978-1-62708-176-4
..., bondable resistance strain gages, and clip-on extensometers or compressometers. Also applicable to low-temperature strain measurements but less commonly used are capacitive transducer methods ( Ref 11 ), noncontact laser extensomers, and linear variable differential transformers (LVDT) with extension rods...
Abstract
This article provides a discussion on the mechanical properties of metals, ceramics, and polymers and fiber-reinforced polymer composites at low temperatures. It reviews the factors to be considered in tensile and compression testing of these materials. The article details the equipment used for low-temperature tensile and compression tests with illustrations. It concludes with a discussion on the various test methods and their ASTM standard for compression and tension testing.
1