Skip Nav Destination
Close Modal
By
John A. Shields, Jr., Kurt D. Moser, R. William Buckman, Jr., Todd Leonhardt, C. Craig Wojcik
Search Results for
niobium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 204 Search Results for
niobium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006255
EISBN: 978-1-62708-169-6
... Abstract This article briefly discusses the annealing practices for refractory metals such as tungsten, molybdenum, niobium, tantalum, and rhenium and their alloys. It also presents the applications and properties of these metals and their alloys. annealing microstructure molybdenum...
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003824
EISBN: 978-1-62708-183-2
... Abstract For chemical processing, niobium resists a wide variety of corrosive environments. These environments include mineral acids, many organic acids, liquid metals, and most salt solutions. This article focuses on the mechanisms of corrosion resistance of niobium alloys in these...
Abstract
For chemical processing, niobium resists a wide variety of corrosive environments. These environments include mineral acids, many organic acids, liquid metals, and most salt solutions. This article focuses on the mechanisms of corrosion resistance of niobium alloys in these environments. The niobium alloys include Nb-1Zr, Nb-55Ti, Nb-50Ta, and Nb-40Ta. The article describes the use of these corrosion resistant niobium alloys. It provides information on applications of niobium in various industries.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003994
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the forging characteristics of different types of refractory metals and alloys, namely, niobium and niobium alloys, molybdenum and molybdenum alloys, tantalum and tantalum alloys, and tungsten and tungsten alloys. forging molybdenum molybdenum alloys...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
..., current density, and magnetic field boundary separating superconducting and normal conducting states. These data, which are for a niobium-titanium superconducting alloy, are based on measurements at 4.2 K. On the basis of magnetic response, superconducting materials can be divided into two...
Abstract
Superconductors are materials that exhibit a complete disappearance of electrical resistivity on lowering the temperature below the critical temperature. A superconducting material must exhibit perfect diamagnetism, that is, the complete exclusion of an applied magnetic field from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and high-temperature ceramic superconductors. This article provides an overview of basic principles of superconductors and the different classes of superconducting materials and their general characteristics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... Abstract The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006244
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of ternary alloy phase diagrams for which niobium (Nb) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 2 phase diagrams: Nb-Ti-W isothermal section at 600 °C...
Abstract
This article is a compilation of ternary alloy phase diagrams for which niobium (Nb) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 2 phase diagrams: Nb-Ti-W isothermal section at 600 °C; and Nb-Ti-W isothermal section at 1000 °C.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006187
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of binary alloy phase diagrams for which niobium (Nb) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary...
Abstract
This article is a compilation of binary alloy phase diagrams for which niobium (Nb) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... that has restricted the applicability of the metals to low-temperature or nonoxidizing high-temperature environments. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. Refractory metals at one time were...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003203
EISBN: 978-1-62708-199-3
... tempering of precipitation-hardening stainless steels. The article also lists general recommendations for the annealing temperatures of tantalum, niobium, molybdenum, tungsten, and their alloys. annealing heat treating quenching refractory metals solution treating stainless steels stress...
Abstract
Heat treating of stainless steel produces changes in physical condition, mechanical properties, and residual stress level and restores maximum corrosion resistance when that property has been adversely affected by previous fabrication or heating. This article focuses on annealing of different types of stainless steels such as austenitic, ferritic, duplex, martensitic, and precipitation-hardening, and on the heat treatment of superalloys and refractory metals. It discusses the recommended procedures for solution annealing, austenite conditioning, transformation cooling, and age tempering of precipitation-hardening stainless steels. The article also lists general recommendations for the annealing temperatures of tantalum, niobium, molybdenum, tungsten, and their alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... elements that stabilize the γ phase such as titanium, niobium, molybdenum, zirconium, and vanadium, and their properties are summarized below. Pure uranium has also been used in reactors by roll cladding with aluminum ( Ref 2 ). The corrosion resistance of uranium-aluminum alloys was therefore studied...
Abstract
This article reviews general corrosion of uranium and its alloys under atmospheric and aqueous exposure as well as with gaseous environments. It describes the dependence of uranium and uranium alloy corrosion on microstructure, alloying, solution chemistry, and temperature as well as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology of hydride corrosion of uranium are discussed. The article provides information on environmentally assisted cracking, protective coatings, and surface modification of uranium and its alloys. It also summarizes the environmental, safety, and health considerations for their use.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003180
EISBN: 978-1-62708-199-3
... for the press-brake forming of refractory metal sheet 0.5 to 1.3 mm (0.020 to 0.050 in.) thick Metal or alloy Forming temperature, °C (°F) Minimum bend radius (a) Springback, degrees Test data Preferred Niobium alloys (annealed) C-103 (Nb-10Hf-1Ti), C-129Y (Nb-10Hf-10W) Room...
Abstract
Characteristics of stainless steel that affect its formability include yield strength, tensile strength, and ductility, in addition to the effect of work hardening on these properties. This article discusses the forming process of stainless steel, heat-resistant alloys and refractory metals, detailing the major aspects of forming, including formability, lubrication, and forming methods and tools. The effect of factors such as alloy condition, cold reduction, forming direction (in the case of heat-resistant alloys) and temperature (in the case of refractory metals) on formability is also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
... vanadium and niobium. This means of grain refinement in steel was greatly accelerated by the discovery of an extensive body of niobium (formerly known as columbium) bearing ore in Brazil in the late 1950s. Hitherto, niobium had been used as an alloying element in specialty steels, but had been too...
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... platinized niobium or platinized tantalum anodes is the valvelike nature of the oxide film on the niobium or tantalum substrates. Niobium in such anodes operates to a breakdown voltage of 40 to 50 V, but tantalum will operate up to 200 V. For both materials, the resistivity of the alloys used is...
Abstract
Tantalum is one of the most versatile corrosion-resistant metals known. The outstanding corrosion resistance and inertness of tantalum are attributed to a very thin, impervious, protective oxide film that forms on exposure of the metal to slightly anodic or oxidizing conditions. This article provides a discussion on the mechanism of corrosion resistance and on the behavior of tantalum in different corrosive environments, namely, acids; salts; organic compounds; reagents, foods, and pharmaceuticals; body fluids and tissues; and gases. It contains several tables that summarize the effects of acids, salts, and miscellaneous corrosive reagents on tantalum and applications for tantalum equipment in chemical, pharmaceutical, and other industries. Finally, the article presents a discussion on hydrogen embrittlement, the galvanic effects, and cathodic protection of tantalum and describes the corrosion resistance of different types of tantalum-base alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... 6% Al generally are susceptible to stress corrosion. Additions of tin, manganese, and cobalt are detrimental, whereas zirconium appears to be neutral. Beta stabilizers such as molybdenum, vanadium, and niobium are beneficial. Susceptibility of titanium alloys to SCC also can be affected by heat...
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006253
EISBN: 978-1-62708-169-6
... properties that can be classified as alpha (α) alloys, beta (β) alloys, or alpha-beta (α + β) alloys. Titanium also is part of a family of metals known as the reactive metals. All of these reactive metals, notably titanium, zirconium, niobium, and tantalum, benefit from highly protective oxide films. As a...
Abstract
This article introduces the different types, distinctions, and grades of commercially pure titanium and titanium alloys. It describes three types of alloying elements: alpha stabilizers, beta stabilizers, and neutral additions. The article discusses the basic categories of titanium alloys, namely, alpha and near-alpha titanium alloys, beta and near-beta titanium alloys, and alpha-beta titanium alloys. It also describes the general microstructural features of titanium alloys.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
..., 0.010 Mg) 0.25 Zn-Cu-Ti alloy (0.8 Cu, 0.15 Ti) 0.25 Pure metals Beryllium 0.35 Cadmium 0.22 Chromium 0.16 Cobalt 0.165 Germanium 0.14 Gold 0.71 Indium 0.057 Iridium 0.14 Lithium 0.17 Molybdenum 0.34 Niobium 0.13 Palladium 0.168 Platinum...
Abstract
This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel and nickel alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... among the refractory metals (tungsten, molybdenum, niobium, and tantalum) and their alloys necessitate the use of a variety of techniques for preparation of metallographic specimens. A particular product form, such as wire, may also require special preparation techniques. PREPARATION OF...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... heat treatment of steels. Alloying additions lead to the precipitation of various phases, including γ′[Ni 3 (A1, Ti)], γ″, and various carbides such as MC (M=titanium, niobium, and so on), M 6 C (M=molybdenum and/or tungsten), or M 23 C 6 (M=chromium). In general, the primary strength of heat...
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... as 0.1 to 6 at.% of secondary alloying elements such as niobium, chromium, manganese, vanadium, tantalum, and tungsten. In the sections that follow, the processing of near-gamma titanium aluminide alloys via wrought, ingot-metallurgy and powder-metallurgy routes is described. All alloy compositions...
Abstract
This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium aluminide alloys, are also discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003826
EISBN: 978-1-62708-183-2
... carbide former and provides improved grain-boundary ductility and increased oxidation resistance ( Ref 18 ). Hafnium is also used in several niobium- and tantalum-base alloys to increase strength at high temperature. The niobium-base alloys are C-103 (Nb-10Hf-1Ti) and C-129Y (Nb-10Hf-0.07Y). These...
Abstract
This article describes the processes involved in the production of hafnium and its alloys. It discusses the physical, mechanical and chemical properties of hafnium. The aqueous corrosion testing of hafnium and its alloys is detailed. The article reviews the corrosion resistance of hafnium in specific media, namely, water, steam, hydrochloric acid, nitric acid, sulfuric acid, alkalis, organics, molten metals, and gases. Forms of corrosion, namely, galvanic corrosion, crevice corrosion, and pitting corrosion are included. The article explains the corrosion of hafnium alloys such as hafnium-zirconium alloys and hafnium-tantalum alloys. It also deals with the applications of hafnium and its alloys in the nuclear and chemical industries.