1-20 of 663

Search Results for nickel-manganese plating

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
..., nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys. health and safety considerations nickel alloy plating nickel-chromium plating nickel-cobalt plating nickel...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001045
EISBN: 978-1-62708-161-0
... at frogs, switches, and crossings, where wheel impacts at intersections are especially severe. Because austenitic manganese steel resists metal-to-metal wear, it is used in sprockets, pinions, gears, wheels, conveyor chains, wear plates, and shoes. Austenitic manganese steel has certain properties...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... (the spacing between the alternating plates of ferrite and cementite in pearlite). In a hardened and tempered steel, manganese can have the opposite effect, as illustrated in Fig. 12 . Manganese can make the steel susceptible to temper embrittlement, and it may cause the formation of less tough upper bainite...
Image
Published: 01 January 2005
Fig. 8 Corrosion rates of die-cast magnesium in 5% NaCl salt spray and continuous-immersion exposures. Source: Ref 18 Analysis of die-cast plates, % AM60A (○) AZ91D (●) Aluminum 6.2 9.7 Zinc 0.09 0.74 Manganese 0.22 0.19 Nickel 0.003 0.0018 Iron 0.005 More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003102
EISBN: 978-1-62708-199-3
... are especially severe. Because austenitic manganese steel resists metal-to-metal wear, it is used in sprockets, pinions, gears, wheels, conveyor chains, wear plates, and shoes. Austenitic manganese steel has certain properties that tend to restrict its use. It is difficult to machine and usually has a yield...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... include mild steels, hot-rolled carbon-manganese steels, and heat-treated carbon steels. Mild steels and carbon-manganese steels are available in all the standard wrought forms: sheet, strip, plate, structural shapes, bar, bar-size shapes, and special sections. The heat-treated grades are available...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001737
EISBN: 978-1-62708-178-8
..., and geological materials. Applications Example 1: Stainless Steel Spark source mass spectrometry can be used to determine the concentrations of chromium, nickel, and manganese in a stainless steel sample. Sample Preparation The as-received material is roughly cube shaped, 25 mm (1 in.) on a side...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... formation, it is a more potent austenite stabilizer than nickel and promotes increased amounts of retained austenite and lower as-cast hardness. For this reason, higher manganese levels are undesirable. When considering the nickel content required to avoid pearlite in a given casting, the level of manganese...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... temperatures are typically made from alloys that maintain some ductility at the service temperatures. Cryogenic alloys include 9Ni steels, austenitic stainless steels, manganese stainless steels, maraging steels, titanium, aluminum, and nickel alloys. The choice of weld-metal alloy may depend solely...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... stabilizer, more so than nickel, and will promote increased amounts of retained austenite and lower as-cast hardness. For this reason higher manganese levels are undesirable. In considering the nickel content required to avoid pearlite in a given casting, the level of manganese present should be a factor...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003134
EISBN: 978-1-62708-199-3
... for that quality in a casting alloy. Foundry alloys generally are classified as high-shrinkage or low-shrinkage alloys. The former class includes the manganese bronzes, aluminum bronzes, silicon bronzes, silicon brasses, and some nickel silvers. They are more fluid than the low-shrinkage red brasses, more...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... nickel, and will promote increased amounts of retained austenite and lower as-cast hardness. For this reason higher manganese levels are undesirable. In considering the nickel content required to avoid pearlite in a given casting, the level of manganese present should be a factor. Copper Copper...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
... of stage 1 will provide time to cool parts from the austenitizing temperature to the austempering temperature, avoiding the precipitation of pearlite. This property is usually called austemperability. Most regular alloying elements, such as nickel, copper, manganese, and molybdenum, increase the time...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001013
EISBN: 978-1-62708-161-0
... (a) Heat-treated carbon manganese-silicon steel plates for moderate-and lower-temperature service Low-alloy steel A 202 (a) Cr-Mn-Si alloy steel plates A 203 (a) Nickel alloy steel plates A 204 (a) Molybdenum alloy steel plates A 225 (a) Mn-V alloy steel plates A 302 (a) Mn-Mo...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... to 7%. Several also contain magnesium and/or manganese. The alloys in this series are strengthened by thermal processing. These alloys attain high strengths and are used in sheet, plate, and extruded forms, primarily in aerospace applications. Copper in aluminum alloys generally decreases...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... elements (carbon, nitrogen, nickel, and manganese) must be present compared with those elements that stabilize ferrite. Examples of fully austenitic ferrous alloys are austenitic stainless steels and austenitic manganese steel. Again, the most visible microstructural features of these single-phase alloys...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
...; At, austempered (bainite). (b) White irons are not usually heat treated, except for stress relief and to continue austenite transformation. Cast iron can be described as an alloy of predominantly iron, carbon, and silicon. Commercially produced irons contain manganese and may be alloyed with nickel...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001406
EISBN: 978-1-62708-173-3
... in cases where the precipitation of chromium carbides suppresses the formation of ferrite side plates through a pinning effect. Nickel Nickel is considered to have a beneficial effect on steel transformation, similar to that of manganese, by lowering the austenite transformation temperature...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001068
EISBN: 978-1-62708-162-7
... the manganese bronzes, aluminum bronzes, silicon bronzes, silicon brasses, and some nickel-silvers. They are more fluid than the low-shrinkage red brasses, more easily poured, and give high-grade castings in the sand, permanent mold, plaster, die, and centrifugal casting processes. With high-shrinkage alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
.... (a) The carbon ranges shown in the range column apply when the specified maximum limit for manganese does not exceed 1.00%. When the maximum manganese limit exceeds 1.00%, add 0.01 to the carbon ranges shown in the table. (b) Maximum of 0.12% C for structural shapes and plates Alloy steel heat...