Skip Nav Destination
Close Modal
Search Results for
nickel-iron-chromium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1144 Search Results for
nickel-iron-chromium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001428
EISBN: 978-1-62708-173-3
... Abstract This article discusses the general welding characteristics and metallurgical welding considerations that play an important function during the welding of nickel, nickel-copper, nickel-chromium, and nickel-chromium-iron alloys. material selection nickel alloys nickel-chromium...
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... Abstract This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar...
Abstract
This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. The article discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
...-tungsten show very high resistance to corrosion, but they are believed not to be true alloys ( Ref 2 ) and have not been used in practice. This article will discuss the alloys nickel-iron, nickel-cobalt, and nickel-manganese that are of practical interest, plus a few paragraphs on nickel-chromium binary...
Abstract
Nickel alloys electroplated for engineering applications include nickel-iron, nickel-cobalt, nickel-manganese, and zinc-nickel. This article provides the process description and discusses the processing variables, properties, advantages, and disadvantages of nickel-iron, nickel-cobalt, nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... Abstract Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel...
Abstract
Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel, and chromium-iron-nickel alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... on the commercial forms of nickel alloys, namely, nickel-copper alloys, nickel-chromium and nickel-chromium-iron series, iron-nickel-chromium alloys, controlled-expansion alloys, nickel-iron low-expansion alloys, soft magnetic alloys, and welding alloys. corrosion resistance mechanical properties nickel...
Abstract
Nickel in elemental form or alloyed with other metals and materials has made significant contributions to our present-day society and promises to continue to supply materials for a demanding future. This article provides a historical overview and physical metallurgy of nickel and nickel alloys. It lists and describes the compositions, mechanical and physical properties, and applications of commercial nickel and its alloys. The article briefly explains the forms of corrosion resulting from the exposure of nickel alloys to aqueous environments. It provides valuable information on the commercial forms of nickel alloys, namely, nickel-copper alloys, nickel-chromium and nickel-chromium-iron series, iron-nickel-chromium alloys, controlled-expansion alloys, nickel-iron low-expansion alloys, soft magnetic alloys, and welding alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003111
EISBN: 978-1-62708-199-3
... the occurrence, properties, or distribution of constituents in the microstructure. In gray and ductile irons, small amounts of alloying elements such as chromium, molybdenum, or nickel are used primarily to achieve high strength or to ensure the attainment of a specified minimum strength in heavy sections...
Abstract
Alloy cast irons are casting alloys based on the Fe-C-Si system that contain one or more alloying elements added to enhance one or more useful properties. This article discusses the composition of different types of alloy cast iron, including white cast irons, corrosion-resistant cast irons, heat-resistant cast irons, and abrasion-resistant cast irons. It provides information on the effect of the alloying element on their high-temperature properties. The article also discusses the microstructure and mechanical properties of alloy cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... austenitization, quenching, tempering, annealing, and stress relieving. abrasion resistance annealing austenitization chromium-molybdenum iron crushing grinding heat treatment high-alloy white cast iron high-chromium white iron microstructure nickel-chromium white iron quenching tempering...
Abstract
The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including austenitization, quenching, tempering, annealing, and stress relieving.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... treatment high-alloy white iron high-chromium white irons machining microstructure nickel-chromium white irons melting pouring shakeout composition control molds design patterns design casting design HIGH-ALLOYED WHITE CAST IRONS are an important group of materials whose production must...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
... Corrosion-resistant irons derive their resistance to chemical attack chiefly from their high alloy content. Depending on which of three alloying elements—silicon, chromium, or nickel—dominates the composition, a corrosion-resistant iron can be ferritic, pearlitic, martensitic, or austenitic in its...
Abstract
Alloy cast irons are considered to be those casting alloys based on the iron-carbon-silicon system that contain one or more alloying elements intentionally added to enhance one or more useful properties. Alloy cast irons can be classified as white cast irons, corrosion-resistant cast irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types of alloy cast irons. The article explains the effects of alloying elements and the effects of inoculants. In most cast irons, it is the interaction among alloying elements that has the greatest effect on properties. Inoculants other than appropriate graphitizing or nodularizing agents are used rarely, if ever, in high-alloy corrosion-resistant or heat-resistant irons.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high...
Abstract
High-alloyed white cast irons are an important group of materials whose production must be considered separately from that of ordinary types of cast irons. The metallic matrix supporting the carbide phase in the high-alloy white cast irons can be adjusted by alloy content and heat treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high-chromium white irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003118
EISBN: 978-1-62708-199-3
...). About two-thirds of the corrosion-resistant steel castings produced in the United States are of grades that contain 18 to 22% Cr and 8 to 12% Ni. In general, the addition of nickel to iron-chromium alloys improves ductility and impact strength. An increase in nickel content increases resistance...
Abstract
Cast stainless steels are widely used for their corrosion resistance in aqueous media at or near room temperature and for service in hot gases and liquids at elevated temperatures. This article provides a comparison between cast and wrought stainless steels in terms of composition, microstructure and properties. It discusses the grade designations and compositions of cast stainless steels. The article describes the mechanical properties, applications, and corrosion characteristics of corrosion-resistant steel castings and heat-resistant steel castings.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006239
EISBN: 978-1-62708-163-4
... in the ternary system. Additional ternary systems that include chromium are provided in the following locations in this Volume: “Al-Cr-Fe (Aluminum - Chromium - Iron)” , “Al-Cr-Mn (Aluminum - Chromium - Manganese)” and “Al-Cr-Ni (Aluminum - Chromium - Nickel)” in the article “Al (Aluminum) Ternary...
Abstract
This article is a compilation of ternary alloy phase diagrams for which chromium (Cr) is the first-named element in the ternary system. The other elements are Fe, Mn, Mo, N, Nb, Ni, Ti, V and W. The diagrams are presented with element compositions in weight percent. The article includes 55 phase diagrams (liquidus projection, solidus projection, isothermal section and vertical section).
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003159
EISBN: 978-1-62708-199-3
... Abstract Low-expansion alloys are materials with dimensions that do not change appreciably with temperature. Alloys included in this category are various binary iron-nickel alloys and several ternary alloys of iron combined with nickel-chromium, nickel-cobalt, or cobalt-chromium alloying. Low...
Abstract
Low-expansion alloys are materials with dimensions that do not change appreciably with temperature. Alloys included in this category are various binary iron-nickel alloys and several ternary alloys of iron combined with nickel-chromium, nickel-cobalt, or cobalt-chromium alloying. Low-expansion alloys are used in various applications such as rods and tapes for geodetic surveying, moving parts that require control of expansion (such as pistons for some internal-combustion engines), bimetal strip, components for electronic devices etc. This article discusses the properties, composition, and applications of iron-nickel low-expansion alloys (Invar), as well as other special alloys, including iron-nickel-chromium alloys, iron-nickel-cobalt alloys, iron-cobalt-chromium alloys, and high-strength, controlled-expansion alloys. It covers the factors affecting coefficient of thermal expansion of iron-nickel alloys, including heat treatment and cold drawing. Magnetic, physical, thermal, electrical and mechanical properties of iron-nickel alloys are also covered.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... Abstract This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium...
Abstract
This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium, are reviewed. The article provides information on classes of the cast irons based on corrosion resistance. It describes the various forms of corrosion in cast irons, including graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic parameters to be considered before selecting the cast irons for corrosion services.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001099
EISBN: 978-1-62708-162-7
...-strength controlled-expansion alloys. coefficient of thermal expansion iron-cobalt-chromium alloys iron-nickel alloys iron-nickel-chromium alloys iron-nickel-cobalt alloys low-expansion alloys LOW-EXPANSION ALLOYS include various binary iron-nickel alloys and several ternary alloys of iron...
Abstract
Low-expansion alloys are characterized by their dimensional stability, suiting them for applications such as geodetic tape, bimetal strip, glass-to-metal seals, and electronic components. This article describes the composition of such alloys along with related properties and behaviors. It explains how humidity and other factors, such as heat treating and cold drawing, influence thermal expansion rates. It also provides machining information on some of the more common low-expansion alloys, and reviews special alloy types including iron-cobalt-chromium alloys, hardenable alloys, and high-strength controlled-expansion alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001407
EISBN: 978-1-62708-173-3
... Fundamentally, stainless steels are based on the iron-chromium, iron-chromium-carbon, and iron-chromium-nickel systems, but may contain a number of other alloying additions that alter their microstructures and/or properties. The “stainless” nature of these steels arises primarily from the addition of chromium...
Abstract
Stainless steels are an important class of engineering alloys used in both wrought and cast form for a wide range of applications and in many environments. This article aids in the selection of stainless steels based on weldability and service integrity. Stainless steels are classified by microstructure and are described as ferritic, martensitic, austenitic, or duplex. The article illustrates compositional ranges of the ferritic, martensitic, austenitic, and duplex alloys in the Schaeffler diagram. It describes the metallurgical aspects of welded stainless steels to be considered for particular engineering applications and service conditions. The article discusses the microstructural evolution of the weld metal and the heat-affected zone, susceptibility to defect formation during welding, mechanical and corrosion properties, and weld process tolerance.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... hardfacing materials are normally classified as steels or low-alloy ferrous materials, high-chromium white irons or high-alloy ferrous materials, carbides, nickel-base alloys, or cobalt-base alloys. A few copper-base alloys are sometimes used for hardfacing applications, but for the most part, hardfacing...
Abstract
Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type alloys. Hardfacing applications for wear control vary widely, ranging from very severe abrasive wear service, such as rock crushing and pulverizing to applications to minimize metal-to-metal wear. This article discusses the types of hardfacing alloys, namely iron-base alloys, nonferrous alloys, and tungsten carbides, and their applications and advantages.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006341
EISBN: 978-1-62708-179-5
... major groups determined by their chromium content along with the needs of other alloy elements, such as nickel and/or molybdenum: Class I: The nickel-chromium or Ni-Hard white irons that contain a substantial amount of nickel but relatively low chromium. The grades in this category may contain...
Abstract
The high-alloy irons can be categorized into two main groups: the high-alloy graphitic irons (covering both gray and ductile grades) and the high-alloy white irons. High-alloy irons are used in applications with demanding requirements, such as high resistance to wear, heat, and corrosion, or for combined properties. This article discusses the specification and selection of high-alloy irons. The common alloying elements and their effect on the stable and metastable eutectic temperatures are listed in a table. The article provides information on the compositions, properties and applications of high-alloy graphitic irons and high-alloy white irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006332
EISBN: 978-1-62708-179-5
... microstructure of class III type A high-chromium white iron The high-alloy white irons covered by ASTM A532 specification consist of three classes and two major groups. The nickel-chromium white irons (class I), commonly referred to as Ni-Hard irons, contain 3 to 7% Ni and approximately 1.5 to 11% Cr...
Abstract
Castability of alloys is a measure of their ability to be cast to a given shape with a given process without the formation of cracks/tears, pores/shrinkage, and/or other significant casting defects. This article discusses the factors which affect the fluidity of an iron melt: alloy composition and initial melt condition. Besides the basic alloy properties, the effective castability of high-alloy irons can be significantly improved through casting and casting system design. The article describes the product design and processing factors of high-alloy graphitic irons and high-alloy white irons. It explains the heat treatment of high-silicon irons for high-temperature service and concludes with a discussion on machining and finishing of high-alloy iron castings.
1