Skip Nav Destination
Close Modal
Search Results for
nickel-chromium plating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 975
Search Results for nickel-chromium plating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failures from Various Mechanisms and Related Environmental Factors
> Metals Handbook Desk Edition
Published: 01 December 1998
Fig. 35 Micrograph showing difference in dezincification of inside and outside surfaces of a plated copper alloy C26000 (cartridge brass, 70% Cu) pipe for domestic water supply. Area A shows plug-type attack on the nickel-chromium-plated outside surface of the brass pipe that initiated below
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
..., nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys. health and safety considerations nickel alloy plating nickel-chromium plating nickel-cobalt plating nickel...
Abstract
Nickel alloys electroplated for engineering applications include nickel-iron, nickel-cobalt, nickel-manganese, and zinc-nickel. This article provides the process description and discusses the processing variables, properties, advantages, and disadvantages of nickel-iron, nickel-cobalt, nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001245
EISBN: 978-1-62708-170-2
... from solution. Prior to the introduction of “organic” baths, decorative nickel coatings were produced by polishing nickel-plated parts mechanically, a practice that continued from 1870 to about 1945. Thin layers of chromium were electrodeposited over polished nickel coatings for the first time in 1927...
Abstract
This article discusses the process considerations and deposit properties of nickel plating. It describes the Watts solution and the anode materials used. The article focuses on the nickel plating processes used for decorative, engineering, and electroforming purposes. It provides information on the quality control of nickel plating. It concludes with a review of the environmental, health, and safety considerations associated with nickel plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001244
EISBN: 978-1-62708-170-2
... or copper and nickel, which give the chromium bright, semibright, or satin cosmetic appearances. Corrosion protection depends on the choice of undercoating, as well as the type of chromium being applied. Parts made from steel, copper and its alloys, zinc, stainless steel, and aluminum are typically plated...
Abstract
Most decorative chromium coatings have been applied using hexavalent and trivalent plating processes that are based on chromic anhydride. This article provides a discussion on chromium electrodeposits and their use as microdiscontinuous coating for corrosion protection. It focuses on the operating conditions of various chromium plating parameters: bath composition, temperature, voltage, anode materials, and current density. These parameters need to be considered for obtaining high quality decorative chromium coatings. An overview of plating problems encountered in chromium plating and their corrections is also provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... Abstract This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article...
Abstract
This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article discusses the material and process substitutions that can be used to eliminate the use or emissions of chromium in industrial processes. It describes the physical characteristics of each coating, economics, environmental impacts, advantages, and disadvantages of alternative processes.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... Abstract Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel...
Abstract
Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel, and chromium-iron-nickel alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
... with a clear or colored chromate conversion film. This results in coatings that are both protective and decorative. Chromium plating, electroless nickel plating, and anodizing of aluminum (not actually an electroplating process, but an electrochemical process widely practiced at electroplating installations...
Abstract
This article discusses the various factors that affect the corrosion performance of electroplated coatings. It describes the effects of environment and the deposition process on substrate coatings. The article provides a discussion on the electrochemical techniques capable of predicting the corrosion performance of a plated part. It reviews the designs of coating systems for optimal protection of the substrate. The article also discusses controlled weathering tests and accelerated tests used to predict and determine the relative durability of the coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... chloride, hydrochloric acid, and water, operated at 90 to 95 °C (194 to 203 °F); immersion is for 10 to 60 s. This procedure is recommended for plating aluminum with copper, nickel, or hard chromium. Because the solutions contain a high concentration of chlorides (4.6% by weight) and operate at high...
Abstract
Aluminum components are often plated with other metals to mitigate the effects of corrosion and wear, improve application performance, and extend service life. This article discusses some of the more common aluminum plating processes, including electroplating, immersion plating, and electroless plating, and describes various plating materials and the types of applications in which they are used. It provides critical processing details such as temperatures, ratios, ranges, times, and rates. The article explains how to prepare aluminum components for electroplating, discussing surface roughening, anodizing, and immersion procedures along with expected results.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... interfere with the adherence of coatings. Chromium has been a favored strike coating because its thermal coefficient of expansion is similar to that of molybdenum. It has good as-plated adherence, and the two metals diffuse to form a solid solution at elevated temperatures. Nickel has also found extensive...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
... hardness attainable with selective plating versus bath plating Metal type Microhardness, DPH Bath plating Selective plating Cadmium 30–50 20–27 Chromium 750–1100 (a) 850–1100 Cobalt 180–440 510 Copper 53–350 140–210 Gold 40–100 140–150 Lead 4–20 7 Nickel 150...
Abstract
Selective plating, also known as brush plating, differs from traditional tank or bath plating in that the workpiece is not immersed in a plating solution (electrolyte). Instead, the electrolyte is brought to the part and applied by a handheld anode or stylus, which incorporates an absorbent wrapping for applying the solution to the workpiece (cathode). This article focuses on the selective plating systems that include a power pack, plating tools, anode covers, specially formulated plating solutions, and any auxiliary equipment required for the particular application. It provides a detailed account of the applications of selective plating, with examples. The article describes the advantages, limitations, key process elements, and health and safety considerations of selective plating. It also includes the most important industrial, government, and military specifications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001271
EISBN: 978-1-62708-170-2
... in continuous steel strip plating lines is electrodeposited with one of five metallic coatings: zinc, tin, chromium, and alloys of zinc with either nickel or iron. Several other metallic coatings, such as copper, nickel, brass (Cu-Zn), and terne (Pb-Sn), are also applied by continuous steel strip plating...
Abstract
This article explains the applications of continuous electroplated steel. For each category of application, the type of coating needed and the key attributes of the coating are discussed. The bulk of the article describes electrodeposition technology, including plating line components and process classification.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... cleaning and plating operations. When flawless chromium-plated surfaces are required, it is necessary both to buff and color buff the polished copper alloy surfaces before plating. Chromium reproduces all imperfections in the underlying plating or base metal, and because chromium is hard and has a high...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
... is applied directly to the base metal; decorative chromium is applied over undercoats of nickel or of copper and nickel. Principal Uses The major uses of hard chromium plating are for wear-resistance applications, improvement of tool performance and tool life, and part salvage. Table 1 lists parts...
Abstract
Hard chromium plating is produced by electrodeposition from a solution containing chromic acid and a catalytic anion in proper proportion. This article presents the major uses of hard chromium plating, and focuses on the selection factors, plating solutions, solution and process control, equipment, surface preparation, and crack patterns and other characteristics of hard chromium plating. It offers recommendations for the design and use of plating racks, describes the problems encountered in hard chromium plating, and their corrective procedures. The article provides information on the removal of chromium plate from coated metals, recovery and disposal of wastes, and stopoff media for selective plating.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003022
EISBN: 978-1-62708-200-6
.... Flange. Large flange with sharp inside angles should be avoided to minimize plating costs. Use generous radius on inside angles and taper abutment. Slots. Narrow, closely spaced slots and holes cannot be plated properly with some metals (e.g., nickel and chromium) unless corners are rounded...
Abstract
The process of coating plastics with metals for functional purposes is called metallizing of plastics. This article discusses the metallizing of plastics, provides information on its history, and gives a short note on applications and adhesion properties of metallic coatings. It also discusses the selection of plastics for plating. This article also describes metallizing techniques, including plating (electrolytic or electroplating), vacuum metallizing and thermal spraying, and environmental considerations. The article discusses the quality assurance procedures for metallized plastic parts which include tests that assess the quality of the finish, coating thickness, adhesion, and corrosion resistance, and gives a short note on service performance, which includes service condition classifications.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003833
EISBN: 978-1-62708-183-2
... Abstract This article discusses the corrosion of chromium electrodeposits and the ways for optimizing corrosion resistance. It describes the processing steps and conditions for hard chromium plating. These steps include pretreatment, electroplating, and posttreatment. The article also provides...
Abstract
This article discusses the corrosion of chromium electrodeposits and the ways for optimizing corrosion resistance. It describes the processing steps and conditions for hard chromium plating. These steps include pretreatment, electroplating, and posttreatment. The article also provides information on duplex coatings and the applications of chromium electrodeposits.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... or in a volatile solvent 38–75 (1.5–3.0) Solvent rinsing or alkaline cleaning Highly finished parts stored for prolonged periods Source: Ref 7 Electroplating and Electroless Plating Cast irons are most commonly plated with chromium, nickel, copper, cadmium, and zinc. In addition, gold, lead...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... Abstract This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons. iron castings heat...
Abstract
This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001428
EISBN: 978-1-62708-173-3
.... An example of a typical fissure found in a nickel-chromium HAZ is shown in Fig. 1 . Fig. 1 Photomicrograph showing a heat-affected zone microfissure in a nickel-chromium alloy. Specimen is a GMAW 44.4 mm (1.75 in.) plate. Electrolytic phosphoric acid etchant, 75× Grain boundary liquation...
Abstract
This article discusses the general welding characteristics and metallurgical welding considerations that play an important function during the welding of nickel, nickel-copper, nickel-chromium, and nickel-chromium-iron alloys.
1