1-20 of 336 Search Results for

nickel-beryllium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003770
EISBN: 978-1-62708-177-1
...Abstract Abstract The two major types of beryllium-containing alloys are copper-berylliums and nickel-berylliums. The most widely used beryllium-containing alloys are wrought copper-berylliums, which provide good strength while retaining useful levels of electrical and thermal conductivity...
Image
Published: 01 December 2004
Fig. 19 Nickel-beryllium alloy strip (UNS N03360), solution annealed at 990 °C (1800 °F), water quenched, and aged at 510 °C (950 °F) for 1.5 h. The structure shows nickel-beryllium compound particles dispersed uniformly through the nickel-rich matrix. Hardening precipitates are not resolved More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
..., solution treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
...Abstract Abstract Addition of beryllium, up to about 2 wt″, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002411
EISBN: 978-1-62708-193-1
...Abstract Abstract Copper alloys are classified by the International Unified Numbering System designations to identify alloy groups by major alloying element. This article presents the designations and compositions of various copper alloys, such as brasses, nickel silvers, bronzes, beryllium...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006149
EISBN: 978-1-62708-163-4
... crystallographic data Be-Fe (Beryllium-Iron) Be-Fe crystallographic data Be-rich portion of the Be-Fe phase diagram Be-Hf (Beryllium-Hafnium) Be-Hf crystallographic data Be-Nb (Beryllium-Niobium) Be-Nb crystallographic data Be-Ni (Beryllium-Nickel...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
.... Techniques such as electroplating or vacuum depositing coatings such as nickel, copper, or titanium have been used to enhance wettability. When powdered brazing filler alloys are used, additions of titanium hydride have been made. During brazing, the hydride decomposes and plates the beryllium surfaces...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006217
EISBN: 978-1-62708-163-4
... Diagrams.” “Be-W (Beryllium - Tungsten)” in the article “Be (Beryllium) Binary Alloy Phase Diagrams.” “C-W (Carbon - Tungsten)” in the article “C (Carbon) Binary Alloy Phase Diagrams.” “Co-W (Cobalt - Tungsten)” in the article “Co (Cobalt) Binary Alloy Phase Diagrams.” “Cr-W...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
.... Consequently, the nickel silvers and copper-nickel alloys are less sensitive to the type of welding current used during manufacture. Beryllium-containing alloys also produce toxic fumes during welding. Silicon Silicon has a beneficial effect on the weldability of copper-silicon alloys because of its...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
..., silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003181
EISBN: 978-1-62708-199-3
...Abstract Abstract This article provides a detailed account on forming operations (blanking, piercing, press-brake forming, contour rolling, deep drawing, cold forming, and hot forming) of various nonferrous metals, including aluminum alloys, beryllium, copper and its alloys, magnesium alloys...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
... bronzes, nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys. beryllium-copper alloys cast aluminum bronze cast...
Image
Published: 01 December 2004
Fig. 2 C17510 alloy strip, solution annealed at 900 °C (1650 °F), quenched rapidly to room temperature, and precipitation hardened at 480 °C (900 °F) for 3 h to achieve maximum hardness. Equiaxed grains of supersaturated solution of beryllium and nickel in copper are shown. Etchant 6 ( Table 3 More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
...-detection devices. Beryllium is an important alloying element in copper and nickel for producing commercially important age-hardening alloys that are used in electrical contacts, springs, spot welding electrodes, and nonsparking tools. It is also added to aluminum and magnesium for grain refinement...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006189
EISBN: 978-1-62708-163-4
... Diagrams.” “As-Ni (Arsenic - Nickel)” in the article “As (Arsenic) Binary Alloy Phase Diagrams.” “Au-Ni (Gold - Nickel)” in the article “Au (Gold) Binary Alloy Phase Diagrams.” “B-Ni (Boron - Nickel)” in the article “B (Boron) Binary Alloy Phase Diagrams.” “Be-Ni (Beryllium...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
...Abstract Abstract This article contains a table that lists the thermal conductivity of selected metals and alloys near room temperature. These include aluminum and aluminum alloys; copper and copper alloys; iron and iron alloys; lead and lead alloys; magnesium and magnesium alloys; nickel...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... with this material. Effects of Impurities and Composite Composition Beryllium is available in pure form in alloys, and as a composite with aluminum. Beryllium There are currently four major grades of beryllium (commonly referred to as pure beryllium) commercially available for structural applications...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
...Abstract Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006213
EISBN: 978-1-62708-163-4
... Phase Diagrams.” “Au-Ti (Gold - Titanium)” in the article “Au (Gold) Binary Alloy Phase Diagrams.” “B-Ti (Boron - Titanium” in the article “B (Boron) Binary Alloy Phase Diagrams.” “Be-Ti (Beryllium - Titanium)” in the article “Be (Beryllium) Binary Alloy Phase Diagrams.” “ B-Ti...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003772
EISBN: 978-1-62708-177-1
... by 1 drop HCl per 25 mL solution; add just before using; follow with FeCl 3 or other contrast etch Coppers; copper alloys of beryllium, manganese, and silicon; nickel silver, bronzes, chromium-copper; preferred for all coppers to reveal grain boundaries, grain contrast, and cold deformation 5...