Skip Nav Destination
Close Modal
Search Results for
nickel alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2215 Search Results for
nickel alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
... Abstract This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy...
Abstract
This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy powders: water atomization, high-pressure water atomization, and gas atomization. The article also provides information on the applications of PM hot isostatic pressing in the oil and gas industry.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003147
EISBN: 978-1-62708-199-3
... Abstract Nickel and nickel-base alloys are vitally important to modern industry because of their ability to withstand a wide variety of severe operating conditions involving corrosive environments, high temperatures, high stresses, and combinations of these factors. This article discusses...
Abstract
Nickel and nickel-base alloys are vitally important to modern industry because of their ability to withstand a wide variety of severe operating conditions involving corrosive environments, high temperatures, high stresses, and combinations of these factors. This article discusses the mining and extraction of nickel and describes the uses of nickel. It discusses the categories of nickel-base alloys, including wrought corrosion-resistant alloys, cast corrosion-resistant alloys, heat-resistant alloys (superalloys), and special-purpose alloys. The article covers the corrosion resistance of nickel with the inclusion of varying alloying elements. It provides useful information on the behavior of nickel and nickel alloys in specific environments describes its corrosion resistance in certain acids, alkalis, and salts.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... Abstract This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar...
Abstract
This article discusses the procedures used for pickling nickel and nickel alloys. Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. The article discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... Abstract Nickel in elemental form or alloyed with other metals and materials has made significant contributions to our present-day society and promises to continue to supply materials for a demanding future. This article provides a historical overview and physical metallurgy of nickel...
Abstract
Nickel in elemental form or alloyed with other metals and materials has made significant contributions to our present-day society and promises to continue to supply materials for a demanding future. This article provides a historical overview and physical metallurgy of nickel and nickel alloys. It lists and describes the compositions, mechanical and physical properties, and applications of commercial nickel and its alloys. The article briefly explains the forms of corrosion resulting from the exposure of nickel alloys to aqueous environments. It provides valuable information on the commercial forms of nickel alloys, namely, nickel-copper alloys, nickel-chromium and nickel-chromium-iron series, iron-nickel-chromium alloys, controlled-expansion alloys, nickel-iron low-expansion alloys, soft magnetic alloys, and welding alloys.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
... Abstract Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics...
Abstract
Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics. The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes nontraditional machining methods that are suitable for shaping high-temperature, high-strength nickel alloys. These include electrochemical machining, electron beam machining, and laser beam machining.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003619
EISBN: 978-1-62708-182-5
... Abstract The article provides an introduction on the importance of alloying elements on corrosion behavior of nickel alloys and describes the applications of heat-resistant alloys to resist corrosion. It focuses on the metallurgical effects, mainly the effect of internal factors, including...
Abstract
The article provides an introduction on the importance of alloying elements on corrosion behavior of nickel alloys and describes the applications of heat-resistant alloys to resist corrosion. It focuses on the metallurgical effects, mainly the effect of internal factors, including chemical composition and microstructure of the alloy, and the external factors, including electrolyte composition, temperature, and electrode potential, on the corrosion behavior of corrosion-resistant alloys. The article also discusses the implication of changing the alloy microstructure by second-phase precipitation, cold working, and cast and wrought forms on the corrosion behavior of high-nickel alloys.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003676
EISBN: 978-1-62708-182-5
... Abstract Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This article examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on corrosion resistance...
Abstract
Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This article examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on corrosion resistance of these materials. It provides information on the compositions of selected stainless steels, copper-nickel, and nickel-base alloys in a tabular form. The article also illustrates the compositional and property linkages for stainless steels and nickel-base alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001437
EISBN: 978-1-62708-173-3
... Abstract Nickel alloys can be joined reliably by all types of welding processes or methods, with the exception of forge welding and oxyacetylene welding. This article discusses the heat treatment of nickel alloys and tabulates nominal compositions of selected weldable wrought nickel and nickel...
Abstract
Nickel alloys can be joined reliably by all types of welding processes or methods, with the exception of forge welding and oxyacetylene welding. This article discusses the heat treatment of nickel alloys and tabulates nominal compositions of selected weldable wrought nickel and nickel alloys. It provides information on gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, shielded metal arc welding, and submerged arc welding for welding nickel alloys. The article reviews the defects encountered in the arc welding of nickel alloys, including porosity, cracking, and stress-corrosion cracking. It provides information on the factors that influence the choice of filler metal and welding process of nickel alloys.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000617
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of nickel alloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fatigue crack, transgranular cleavage, intergranular...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of nickel alloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fatigue crack, transgranular cleavage, intergranular fracture, grain boundaries, notch and fatigue precrack, dimpled rupture, and fatigue striations of these alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
... Abstract This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu...
Abstract
This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable alloys, and the effects of cold work on aging response and grain growth with examples.
Image
in Properties of Precious Metals
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Properties of Precious Metals
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Properties of Precious Metals
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
Published: 01 January 1990
Image
Published: 01 December 1998
Fig. 6 Effect of nickel content on expansion of iron-nickel alloys. (a) Variation of inflection temperature. (b) Variation of average coefficient of expansion between room temperature and inflection temperature
More
Image
in Nickel and Nickel Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
Published: 01 January 2006
Fig. 5 Corrosion rates for various nickel alloys in 1 to 40% hydrofluoric acid (HF) at 79 °C (175 °F) for 24 h. Rates increase with HF concentration up to 20% HF, then corrosion behavior diverges. The x -axis is nonlinear. Source: Ref 20
More
Image
Published: 01 January 2006
Image
in Corrosion in Petroleum Refining and Petrochemical Operations
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 3 Caustic soda service chart for carbon steel, weldments, and nickel alloys. Source: Ref 88
More
Image
Published: 01 January 2006
Fig. 11 Corrosion losses of stainless steels and nickel alloys from a coal-gasification plant, gasifying coal residues with 0.2 to 0.5% Cl. 304 (UNS S30400), 310Nb (UNS S31040), 800 (UNS N08800), 28 (UNS N08028), 625 (UNS N06625)
More
1