1-20 of 1345

Search Results for nickel alloy plating

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
..., nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys. health and safety considerations nickel alloy plating nickel-chromium plating nickel-cobalt plating nickel...
Image
Published: 15 December 2019
Fig. 1 Depth of electroless nickel plating on AISI 4150 alloy steel as a function of time at 95 °C (205 °F) More
Book Chapter

By Nabil Zaki
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... Abstract This article provides information on the compositions of alkaline and acid baths and process parameters for zinc-iron, zinc-cobalt, zinc-nickel, and tin-zinc plating. acid baths alkaline baths corrosion protection process parameters tin-zinc plating zinc alloy plating zinc...
Image
Published: 01 January 1994
Fig. 11 Preparing magnesium alloys for nickel plating Solution No. Type of solution Composition Amount Operating temperature, °C (°F) Cycle time, min Tank material 1 Alkaline cleaner (a) (b) (b) 82–100 (180–212) 3–10 Low-carbon steel 2 Cold rinse Water More
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... Abstract Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001245
EISBN: 978-1-62708-170-2
... deposits, and “s” for polished dull or semibright electrodeposited nickel. The type of chromium is given by the following symbols: “r” for regular or conventional chromium, “mp” for microporous chromium, and “mc” for microcracked chromium. Decorative Nickel-Iron Alloy Plating Decorative nickel-iron...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001322
EISBN: 978-1-62708-170-2
... ) Better ( Ref 17 , 18 , 28 ) Not applicable; stainless steel and nickel alloys have been used as fasteners ( Ref 17 , 18 ) Better, no coating process Initial cost significantly higher; life cycle cost may be comparable Zinc plating ( Ref 7 , 11 , 21 ) ASTM B 633 (a) Comparable/worse ( Ref 3...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
.... The Plating System For most applications, electrodepositing a single metal layer onto the base material is insufficient to meet product-performance requirements. For example, a nickel coating on a zinc alloy can improve resistance to wear and corrosion; however, adhesion between nickel and zinc is very...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
... and require little metal replacement because of the very thin deposits produced. Displacement tin-lead solder processes are the exception, producing thicker deposits requiring more frequent additions. Types of Electroless Alloy Plating Systems Most electroless alloy systems are based on nickel alloys...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001260
EISBN: 978-1-62708-170-2
... for plating Ni/Cu multiple-layer alloys, where copper is more noble than nickel by nearly 600 mV. For the case of Ni/Cu alloy plating, one often starts with a nickel-sulfate-based electrolyte (Watts nickel bath) or a nickel sulfamate bath. Small amounts of copper sulfate (50 to 1000 ppm Cu +2 ) are then added...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001264
EISBN: 978-1-62708-170-2
... alloys. It presents a detailed account of the equipment and various processes—including bulk and barrel plating—involved in electroless nickel plating, and discusses hydrogen relief methods. The article includes a comprehensive table on nickel plating applications, and concludes with information...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... (that is, gold, silver, platinum, and their alloys) are weldable ultrasonically. Materials plated with such metals are also ultrasonically weldable. Nickel-Base Alloys Many nickel-base alloys and nickel-plated materials are ultrasonically weldable. Figure 6 is a photomicrograph of nickel ultrasonically...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003804
EISBN: 978-1-62708-183-2
... confidence can provide a competitive advantage and increased market share. Growth areas for ferrous materials include the use of stainless steels for food manufacturing and storage equipment, weathering steel (nickel alloy) plate for bridge girders, and Galvalume [1] (aluminum-zinc alloy) sheet for low...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
...) plating. This last method is widely used on parts that cannot be properly plated by electrodeposition. The limitation is that the most prevalent coating applied autocatalytically—electroless nickel—deposits an alloy of nickel and phosphorus (phosphorus content varies with the solution used...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
... in a production facility or be transported to the job site. Selective plating is also versatile; it permits most electroplate types to be deposited onto any conductive substrate that can be touched with an electrode. Cast iron, copper, steel, stainless steel, high-temperature nickel-base alloys, aluminum...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... for some electrical components, such as contacts and lead/tin alloy deposits for some bearing surfaces. Electroless Plating of Nickel on Aluminum For a variety of applications, nickel is plated electroless on aluminum parts of shapes for which electroplating is not practical. The result is a Nickel...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... coating coloring copper copper alloys corrosion resistance electrochemical cleaning electroless plating electroplating finishing immersion plating mass finishing organic coatings passivation pickling polishing surface treatment COPPER and copper alloys constitute one of the major...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003216
EISBN: 978-1-62708-199-3
... uniformity Solderability and brazability Low labor costs Limitations Limitations Higher chemical cost than electroplating Brittleness Poor welding characteristics due to contamination of nickel plate with nickel-phosphorus deposits Need to copper strike plate alloys containing...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
..., because of its low current efficiency and high internal stress. In such cases, most of the deposit thickness is composed of nickel, with chromium constituting only a thin outer layer. For additional information, see the articles “Nickel Plating” and “Nickel Alloy Plating” in this Volume. Electroless...