Skip Nav Destination
Close Modal
By
Ruban Whenish, Pearlin Hameed, Revathi Alexander, Joseph Nathanael, Geetha Manivasagam
Search Results for
neodymium-glass lasers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 43 Search Results for
neodymium-glass lasers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... Abstract Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003042
EISBN: 978-1-62708-200-6
... feedback to the active medium. There are many laser types, but only a few can be made powerful enough for use in material processing. Currently, these lasers, which are generally named for their active medium, are known as ruby, neodymium-glass, neodymium-yttrium aluminum garnet (YAG), and carbon...
Abstract
This article describes the use of conventional machining techniques, laser cutting and water-jet cutting for producing finished composite parts. It explains two representative polymer-matrix composites--graphite and aramid composites--and discusses the machining and drilling problems such as delamination and fiber or resin pullout. The article describes machining and drilling techniques and the necessary tools and cutting parameters. It presents a description of laser cutting. The article also provides information on the advantages, disadvantages, cutting characteristics, and applications of water-jet cutting and abrasive water-jet cutting.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005106
EISBN: 978-1-62708-186-3
... Abstract Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow...
Abstract
Cutting with lasers is accomplished with carbon dioxide (CO 2 ) and neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers. This article provides a description of the process variables and principles of laser cutting. It discusses the three basic types of CO 2 gas lasers, namely, slow axial flow, transverse flow, and fast axial flow and reviews the applications of Nd:YAG laser. The article describes the basic parameters in the laser-cutting process: beam quality, power, travel speed, nozzles design, and focal-point position. Several material conditions that affect the quality of the laser cut are also discussed. The article provides information on the basic laser-cutting system and its optional equipment. A general description of how well each metal group can be cut is also provided.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
... and Molecules Rare-earth elements exhibiting native fluorescence of their ions in solution include cerium, praseodymium, and neodymium, which have broad-band fluorescence due to 5 d -4 f transitions, and samarium, europium, gadolinium, terbium, dysprosium, erbium, and thulium, which have narrow...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
...: YAG, neodymium: yttrium-aluminum-garnet (laser) Selective Laser Sintering of Hydroxyapatite Hydroxyapatite—Ca 10 (PO 4 ) 6 (OH) 2 —is a ceramic material widely used in the biomedical sector as a bone-substitute material, because it promotes and facilitates osteogenesis. Furthermore...
Abstract
Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used in producing tissue engineering parts from HA feedstocks. This article provides a brief overview of the process itself, along with a detailed review of HA-based tissue engineering applications using SLS. Discussion on the various polymer composites is presented. A detailed overview of selected publications on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... 0.010 in. apart in 0.025 in. thick alumina; scribing of thin films; removing broken taps of small diameter Operating parameters and typical values Wavelength (Lasing Material): Ruby (0.03–0.07% Cr); 0.694 μm Nd-Glass (Neodymium Glass, 2–6% Nd); 1.06 μm YAG (Yttrium aluminum garnet, 1% Nd); 1.06...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005618
EISBN: 978-1-62708-174-0
... Abstract Laser has found its applications in cutting, drilling, and shock-peening operations of manufacturing industry because of its accurate, safe, and rapid cutting property. This article provides an account on the fundamental principles of laser cutting (thermal), drilling, and shock...
Abstract
Laser has found its applications in cutting, drilling, and shock-peening operations of manufacturing industry because of its accurate, safe, and rapid cutting property. This article provides an account on the fundamental principles of laser cutting (thermal), drilling, and shock-peening processes of which emphasis is placed on thermal laser cutting. It details the principal set-up parameters, such as the laser beam output, nozzle design, focusing optic position and characteristics, assist gases, surface conditions, and cutting speed. A discussion on the types of gas, supply system, purity level, and flow rates of lasing and assist gases is also provided. The article also describes the metallurgies and other key material considerations that impact laser-cutting performances and includes examples of laser cutting of nonmetal materials.
Book Chapter
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0005549
EISBN: 978-1-62708-162-7
... equivalent man; remainder Administration REP rotating-electrode process NBS National Bureau of Standards Nd:YAG neodymium: yttrium-aluminum-garnet (laser) NET next European torus NIST National Institute of Standards and Technology 1276 / Abbreviations, Symbols, and Tradenames Tx crystallization temperature...
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006883
EISBN: 978-1-62708-392-8
... are restricted. Amorphous thermoplastics such as polycarbonate and polystyrene were initially used in the LS process. When heated by laser above their glass transition temperatures ( T g ), these powders have a wide softening range and thus produce less-dense objects with inferior mechanical properties...
Abstract
According to International Organization for Standardization (ISO)/ASTM International 52900, additive manufacturing (AM) can be classified into material extrusion, material jetting, vat photo polymerization, binder jetting, sheet lamination, powder-bed fusion (PBF), and directed-energy deposition. This article discusses the processes involved in polymer powder 3D printing using laser fusion/ sintering and fusing agents and energy, as well as the thermally fused PBF. It provides information on polymer powder parameters and modeling, the powder-handling system, powder characterization, the flowability of powder feedstock, and polymer part characteristics. The article describes the types of polymers in PBF, the processes involved in powder recycling, and the prospects of PBF in AM. In addition, the biomedical application of polyether ether ketone (PEEK) is also covered.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006651
EISBN: 978-1-62708-213-6
.... Neutral ablated material (in aerosol or particle form) is transported by an argon stream into the ICP, decomposed, atomized, and ionized prior to MS analysis. Lasers are typically frequency-quintupled neodymium: yttrium-aluminum-garnet (Nd:YAG) (213 nm) focused to produce variable spot sizes from <5...
Abstract
This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer and the time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to ionization methods, namely glow discharge mass spectrometry and secondary ion mass spectrometry. It concludes with a section on various examples of applications and interpretation of MS for various materials.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... in calcium tungstate, Leo Johnson and Kurt Nassau, Bell Labs 1961 First neodymium-glass laser, Elias Snitzer, American Optical 1961 Second harmonic of ruby generated by Peter Franken 1961 Trion Instruments founded in Ann Arbor, MI, to make lasers 1961 Quantatron founded by Maiman to make...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... of 10.6 µm Neodymium-doped yttrium-aluminum-garnet (Nd:YAG) lasers with wavelength of 1.064 µm (including both lamp-pumped and diode-pumped rod) Ytterbium-doped yttrium-aluminum-garnet (Yb:YAG) disc lasers with wavelength of 1.030 µm Yb:fiber lasers with wavelength of 1.070 µm Fig. 1...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... applications where conventional technology was unable to provide reliable joining. The availability of high-power continuous-wave (CW) carbon dioxide (CO 2 ) and neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers and the limitations of current welding technology have promoted interest in deep-penetration...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001089
EISBN: 978-1-62708-162-7
... Abstract Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium...
Abstract
Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. This article classifies the rare earth metals based on their purity level, which are designated as research grades (>99.8% pure) and commercial grades (95% - 98% pure), and describes the preparation and purification, including solid-state electrolysis. It further discusses physical, mechanical, and chemical properties; electronic configurations; crystal structures, and explains the alloy forming characteristics of rare earth elements. The article concludes by describing the various applications of commercial-grade rare earth elements and commercial alloys, which incorporates rare earth elements as additives.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... Abstract This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant...
Abstract
This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005639
EISBN: 978-1-62708-174-0
... of the glass if the laser beam is sufficiently energetic. Both fiber laser and electron microbeams have excellent depth of focus. This capability will broaden the tolerance of both processes with respect to beam focus position. Metallurgical Consequences Effect on Cooling/Solidification Rates...
Abstract
Microjoining with high energy density beams is a new subject in the sense that the progress of miniaturization in industry has made the desire to make microjoints rapidly and reliably a current and exciting topic. This article summarizes the current state of microjoining with both electron and laser beams. It considers the elementary physical processes such as heat and fluid flow to introduce the reader to the phenomena that affect melting, coalescence, and solidification needed for a successful microweld. The various forces driving (and resisting) fluid flow are analyzed. The article discusses the equipment suitable for microjoining and the metallurgical consequences and postweld metrology of the process. It also provides examples of developmental welds employing laser and electron beam microwelding techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.9781627082006
EISBN: 978-1-62708-200-6
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
..., NH) The coating structure is often nonuniform and an example of an HVOF-sprayed Inconel 625 coating and the remelted condition is shown in Fig. 3 (Ref 7 ). Fig. 3 Optical micrograph of high-velocity oxyfuel sprayed, Inconel 625 coating in (a) as-sprayed and (b) laser-remelted...
Abstract
This article provides an overview of thermal spray processes. It describes the microstructural character of thermal spray coatings as well as the criteria for coating selection. The optimization, parameterization, and surface preparation and treatments for the thermal spray coatings are also discussed. The article illustrates the adhesion of polymer coatings and the thermal spray process used to remove lead-base paint. It provides information on the specifications, standardization, and guidelines for thermal spray applicators.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... of controlled width and thickness. There are four primary components of the LENS assembly: the laser system, the powder-delivery system, the controlled-environment glove box, and the motion-control system. A 750 W neodymium: yttrium-aluminum-garnet (Nd:YAG) laser, which produces near-infrared laser radiation...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003068
EISBN: 978-1-62708-200-6
... Abstract This article is a compilation of definitions for terms related to engineering materials, including plastics, elastomers, polymer-matrix composites, adhesives and sealants, ceramics, ceramic-matrix composites, glasses, and carbon-carbon composites. engineering materials...
1