Skip Nav Destination
Close Modal
Search Results for
neodymium-doped yttrium aluminum garnet lasers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 33 Search Results for
neodymium-doped yttrium aluminum garnet lasers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... Abstract Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
... diameter ( d s ), welding speed ( V ), and percent overlap (%OL): (Eq 4) f = 100 V / ( d s ) ( 100 − % OL ) Fig. 8 Schematic of laser pulse interaction during pulsed neodymium: yttrium-aluminum-garnet laser welding. %OL, percent overlap; d s , spot diameter...
Abstract
Microjoining methods are commonly used to fabricate medical components and devices. This article describes key challenges involved during microjoining of medical device components. The primary mechanisms used in microjoining for medical device applications include microresistance spot welding (MRSW) and laser welding. The article illustrates the fundamental principles involved in MRSW and laser welding. The article presents examples of various microjoining methods used in medical device applications, including pacemaker and nitinol microscopic forceps.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001398
EISBN: 978-1-62708-173-3
... precision and without contact, making them ideal for applications that have either a destructive nature, such as cutting or drilling, or a constructive nature, such as soldering or annealing. The use of focused energy generated by either a CO 2 or a neodymium-doped yttrium-aluminum-garnet (Nd:YAG...
Abstract
Laser soldering uses a well-focused, highly controlled beam to deliver energy to a desired location for a precisely measured length of time. This article focuses on two types of laser soldering operations, namely, blind laser soldering and intelligent laser soldering. It discusses the function of the blind laser soldering and provides a brief description on key attributes of the blind laser soldering, including repeatability, speed, quality, safety, and flexibility. The article explores the function of the intelligent laser soldering and concludes with a section on key attributes of the intelligent laser soldering. The key attributes of the intelligent laser soldering include repeatability, speed, quality, safety, cost, and flexibility.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... µm Neodymium-doped yttrium-aluminum garnet (Nd:YAG) lasers with wavelength of 1.064 µm (including both lamp-pumped and diode-pumped rod) Ytterbium-doped yttrium-aluminum garnet (Yb:YAG) disc lasers with wavelength of 1.030 µm Yb:fiber lasers with wavelength of 1.070 µm Direct-diode lasers...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... at wavelengths between 1 and 2 μm. These lasers benefit from readily available optical components originally designed for fiber-delivered neodymium-doped yttrium-aluminum-garnet lasers, which emit at a wavelength of 1064 nm. Many directed-energy deposition (DED) and powder-bed fusion (PBF) systems today operate...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006490
EISBN: 978-1-62708-207-5
... in conjunction with motion used for the welding path. Shown in Table 1 are parameters that were established for conventional LBW and LSW for producing butt, lap, fillet, and lap-fillet joints on 3.0 mm (0.12 in.) thick alloy 6013-T4. A neodymium: yttrium-aluminum-garnet (Nd:YAG) laser at a power of 4.5 kW...
Abstract
Although laser stir welding (LSW) is applied to various metallic systems, it is especially appropriate to laser beam welding (LBW) of aluminum, because liquid aluminum possesses significantly less surface tension and viscosity than most common metal alloys, which results in greater fluidity of the molten pool. This article schematically illustrates the keyhole instability in LBW and describes the process details of LSW. Representative macrographs of butt, lap, and fillet welds produced using the LBW and LSW processes are presented. The article discusses the laser welding technologies having a large impact on the ability to apply LSW in production. It concludes with information on the industrial applications of LSW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... of 10.6 µm Neodymium-doped yttrium-aluminum-garnet (Nd:YAG) lasers with wavelength of 1.064 µm (including both lamp-pumped and diode-pumped rod) Ytterbium-doped yttrium-aluminum-garnet (Yb:YAG) disc lasers with wavelength of 1.030 µm Yb:fiber lasers with wavelength of 1.070 µm Fig. 1...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... (2011) are either yttrium-aluminum-garnet (YAG) crystal solid-state lasers doped with neodymium or ytterbium, or CO 2 gas lasers. However, direct-diode lasers are now commercially available with high enough beam quality at high powers to be used for welding and other materials applications ( Ref 18...
Abstract
This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates constant power density boundaries, showing the relationship between the focused beam diameter and the absorbed beam power for approximate regions of keyhole-mode welding, conduction-mode welding, cutting, and drilling.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... lasers and solid-state neodymium-doped yttrium-aluminum-garnet (Nd:YAG) lasers have been used for HLAW. With advancements in the performance of other solid-state technologies, fiber lasers, thin-disk lasers, and semiconductor diode lasers are increasingly used for HLAW. Advantages and Limitations...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006555
EISBN: 978-1-62708-290-7
... Systems Currently, three common energy sources are lasers, electron beams, and indiscriminate electromagnetic energy. Lasers are typically ~100 W neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for polymer PBF. For metals, fiber lasers provide improved coupling and are 200–500 W. Electron...
Abstract
Additive manufacturing is a collection of manufacturing processes, each of which builds a part additively based on a digital solid model. The solid model-to-additive manufacturing interface and material deposition are entirely computer-controlled. The traditional additive manufacturing applications have been used for low production runs of parts with complex shapes and geometric features. Additive manufacturing is also used for topology optimization and it impacts the process and supply chain. This article discusses processes, including vat photopolymerization, material jetting, powder bed fusion, directed energy deposition, material extrusion, binder jetting, and sheet lamination.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
..., molybdenum, and aluminum, with some additions of yttrium in special cases. Applications for Polymer Coatings Polymer spraying ( Ref 46 , 47 , 48 , 49 ) has gained significant commercial attention within the United States since the mid-1990s. Its acceptance as a replacement for paint is due...
Abstract
This article provides an overview of thermal spray processes. It describes the microstructural character of thermal spray coatings as well as the criteria for coating selection. The optimization, parameterization, and surface preparation and treatments for the thermal spray coatings are also discussed. The article illustrates the adhesion of polymer coatings and the thermal spray process used to remove lead-base paint. It provides information on the specifications, standardization, and guidelines for thermal spray applicators.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... 780–880 … Liquid dye lasers Rhodamine 6G 570–640 … Coumarin 102 460–515 … Stilbene 403–428 … (a) YAG, yttrium-aluminum-garnet; YLF, yttrium-lithium-fluoride. Source: Ref 2 Fig. 1 Laser surface-hardening techniques Each year, several billion dollars...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... applications where conventional technology was unable to provide reliable joining. The availability of high-power continuous-wave (CW) carbon dioxide (CO 2 ) and neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers and the limitations of current welding technology have promoted interest in deep-penetration...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006365
EISBN: 978-1-62708-192-4
... 51 ). In addition, different laser systems have since been developed and used for surface texturing ( Ref 52 ). However, the majority of surface texturing is done by using CO 2 ( Ref 53 ) and neodymium-doped yttrium-aluminum garnet (Nd:YAG) lasers ( Ref 11 , 12 , 54 ). Recent progress in LST using...
Abstract
This article provides an overview of surface-texturing techniques. It describes the texturing parameters, namely, shape, depth, and width of the textured pattern, its aspect ratio (depth over width), texture area density, and orientation. The article explains the effect of these parameters on tribological behavior of textured surfaces. It provides information on various modeling approaches for surface texture. The article also discusses the beneficial effect of surface texturing.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005733
EISBN: 978-1-62708-171-9
... neodymium: yttrium-aluminum-garnet (Nd:YAG) laser (λ = 1.06 μm/200 to 400 W) from high (90°) to low (15°) angles of incidence. Typical hole diameters vary from 400 to 1200 μm, whereas pulse lengths tend to vary from 0.5 to 2 ms. The laser spot power density normally is found within the 10 6 to 10 7 W/cm 2...
Abstract
This article presents a summary of the current and new materials and processing techniques for thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). Different thermal spraying and postspraying processing techniques are required to produce coatings with optimal performance. For TBCs and EBCs, the elastic modulus, mechanical strength, and toughness values are extremely important in predicting failure behavior under stress and strain conditions, mainly for modeling purposes. Sand and/or volcanic ash particles are molten in the hot zones of turbines and deposited over TBCs and EBCs. They form calcium-magnesium-aluminosilicate (CMAS) glassy deposits.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... electric arc spraying A nonstandard term for connection of gas or uid sources with distri- Yttrium Aluminum Garnet (Nd:YAG) crys- arc spraying. bution points. tal, a Ytterbium doped silica core ber (Yb: ber) or a Ytterbium doped Yttrium Alumi- electric bonding A nonstandard term for D num Garnet crystal...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006651
EISBN: 978-1-62708-213-6
.... Neutral ablated material (in aerosol or particle form) is transported by an argon stream into the ICP, decomposed, atomized, and ionized prior to MS analysis. Lasers are typically frequency-quintupled neodymium: yttrium-aluminum-garnet (Nd:YAG) (213 nm) focused to produce variable spot sizes from <5...
Abstract
This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer and the time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to ionization methods, namely glow discharge mass spectrometry and secondary ion mass spectrometry. It concludes with a section on various examples of applications and interpretation of MS for various materials.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... that usually involves the interaction of a gaseous phase with a surface. An elevated-temperature environment usually accelerates the process. A classic example is the protection of gas turbine components from attack by oxygen at high temperatures through the use of coatings containing aluminum. The substrates...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... by the returning waves are detected using a laser interferometer ( Fig.19 ). Systems currently in use for advanced composite inspection applications utilize a neodymium-doped yttrium aluminum garnet (Nd-YAG) laser configured as a confocal Fabry-Perot laser interferometer as a demodulator to detect surface...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
1