Skip Nav Destination
Close Modal
By
John Campbell
By
Kumar Sadayappan, Abdallah Elsayed
By
Seokyoung Ahn, Seong-Taek Chung, Seong Jin Park, Randall M. German
By
Ralph Poor, Steve Ruoff, Thomas Philips
By
Stephen J. Mashl
By
John Campbell, József Tamás Svidró, Judit Svidró
By
Magnus Ahlfors
Search Results for
naturally pressurized filling system
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 886
Search Results for naturally pressurized filling system
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005221
EISBN: 978-1-62708-187-0
... filling system through various partial solutions to the prepriming approach. It discusses the six individual parts of the naturally pressurized filling system, namely, offset stepped pouring basin, sprue, sprue/runner junction, runner, gates, and feeding via feeders. The article also lists the key...
Abstract
This article introduces filling and feeding concepts from the general perspective of what constitutes a good casting practice. It briefly reviews the concepts that may help to clarify and quantify objectives for more effective mold-filling designs. The article describes the preprimed filling system through various partial solutions to the prepriming approach. It discusses the six individual parts of the naturally pressurized filling system, namely, offset stepped pouring basin, sprue, sprue/runner junction, runner, gates, and feeding via feeders. The article also lists the key features of the system.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006303
EISBN: 978-1-62708-179-5
... of a Naturally Pressurized System An example calculation of a naturally pressurized system includes the following: Casting weight: 10 kg (22 lb) Rigging system: 10 kg Total pour weight: 20 kg (44 lb) Pour time: 10 s Clearly, at this stage of the filling system design, the weight...
Abstract
Gray cast iron is one of the most tolerant of metals when used with poorly designed filling systems. Good filling systems are necessary for the production of sound and acceptable ductile iron castings. This article presents an outline description of well-designed filling systems for all varieties of cast iron and all varieties of molds. It discusses the general conditions for the filling system layout, including the downsprue, sprue/runner junction, and runner. Both gray cast iron and compacted graphite iron exhibit a growth of graphite in direct contact with the liquid metal. The article concludes with a discussion on feeding of ductile iron.
Book Chapter
Gating Design
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009017
EISBN: 978-1-62708-187-0
.... The potential energy is obviously at a maximum at the highest point in the system, that is, the top of the pouring basin. As metal flows from the basin down the sprue, potential energy changes to kinetic energy as the stream increases in velocity because of gravity. As the sprue fills, a pressure head...
Abstract
A gating system is the conduit network through which liquid metal enters a mold and flows to fill the mold cavity, where the metal can then solidify to form the desired casting shape. This article discusses various desirable design considerations for the gating system. Proper design of an optimized gating system will be made easier by the application of several fundamental principles of fluid flow. The article illustrates the Bernoulli's theorem, the law of continuity, and the effect of momentum. Most casting alloys are subject to the presence of particles that can deleteriously affect the physical properties and appearance of the casting. The article lists a variety of adverse effects of the particles. Ceramic filters, when correctly applied, can be relied on to trap particles before they can enter the casting cavity. The article concludes with information on the advantages and the types of the ceramic filters.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005266
EISBN: 978-1-62708-187-0
... to their complexity and high pressure requirements. Product Design for the Process Product design and die design are intimately related. The high-speed nature of the die casting process allows the filling of thin-wall complex shapes at high rates (of the order of 100 parts per hour per cavity). This capability...
Abstract
This article provides a comprehensive discussion on die casting alloy types and casting processes used in high-pressure die casting. It presents the advantages and disadvantages of high-pressure die casting and describes the product design for the process. The article concludes with information on the metal injection process of high-pressure die casting.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006074
EISBN: 978-1-62708-175-7
... a low-pressure fluid-fill operation, pressure is increased in the system by air-driven or hydraulic-driven pumps and pressure intensifiers. Air-driven intensifiers are lower cost and slower than hydraulic units. The air units are used for small working void vessels and low production rates. Plant air...
Abstract
This article describes the unique aspects of cold isostatic pressing (CIP) in comparison with die compaction, for powder metallurgy parts. It details the components of CIP equipment, including pressure vessels, pressure generators, and tooling material. The article reviews the part shapes and their influence in determining tap density of the filled mold. It provides a discussion on process parameters, such as dwell time, depressurization rate, evaluation of green strength and density, and thermal processing, and illustrates a process flowchart for the production of CIP parts.
Book Chapter
Resin Transfer Molding and Structural Reaction Injection Molding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003020
EISBN: 978-1-62708-200-6
... process a preformed reinforcement is placed in a closed mold, and a reactive resin mixture is mixed under high pressure in a specially designed mix head. Upon mixing, the reacting liquids flow at low pressure through a runner system and fill the mold cavity, impregnating the reinforcement material...
Abstract
Resin transfer molding (RTM) and structural reaction injection molding (SRIM) are two similar processes that are well suited to the manufacture of large, complex, and high-performance structures. This article discusses the similarities and differences of RTM and SRIM processes and the unique design considerations with respect to the physical properties, geometry, surface quality, process economics, equipment, and tooling of a component that should be considered in choosing RTM or SRIM over other competing processes for fabricating reinforced components.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005273
EISBN: 978-1-62708-187-0
... inline degassing and filtering techniques, as well as launder systems to ensure quiescent filling of the casting molds. The use of launders eliminates the turbulence normally associated with mechanical stirring and improves metal quality by reducing the tendency for oxide generation and atmospheric...
Abstract
This article provides an overview of the thixocasting process and discusses the concepts that are important to the practical application of this technology. The thixocasting process involves two casting processes. The first casting process is required to make the feedstock that must be reheated to achieve the structures necessary for casting. The second casting process combines billet sawing, reheating, and the actual injecting of material into the mold. The article focuses on these processes and provides information on rheological tests. It discusses some key design concepts used in thixocasting. The article illustrates the differences between a conventional high-pressure die-casting injection profile and the thixocasting injection profile used to produce the same part.
Book Chapter
Casting Practice: Guidelines for Effective Production of Reliable Castings
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
... and treated, if necessary, using the best current practice. Naturally, it is of no use to incorporate the best designs of filling and feeding systems if the original melt is of such poor quality, or perhaps already damaged, that a good casting cannot be made from it. It is a requirement that either...
Abstract
This article provides a discussion on ten rules for the effective production of reliable castings. These rules include good-quality melt, liquid front damage, liquid front stop, bubble damage, core blows, shrinkage damage, convection damage, segregation, residual stress, and location points.
Book Chapter
Sand Casting of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006533
EISBN: 978-1-62708-207-5
... are required in all alloys but must be higher in long-freezing-range alloys. Based on the chosen pouring technique, the gating design will vary. In gravity-assisted pouring, the gating must be a nonpressurized or a naturally pressurized gating system. There are four essential concepts that must be followed...
Abstract
Sand casting processes are typically classified according to the type of binder present in the molding sand mixture. This article discusses common sand casting processes and design considerations related to shape, gating, feeding, and pattern making methods. It describes the composition of sand and binder normally used, and provides information on the aluminum casting alloys produced. The article discusses precision sand casting and sand reclamation, and includes information on health and safety considerations.
Book Chapter
Modeling and Simulation of Metal Powder Injection Molding
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005503
EISBN: 978-1-62708-197-9
... to the mixture to allow filling of complex tool geometries. A favorite binder system relies on a mixture of paraffin wax and polypropylene, with a small quantity of stearic acid. The combination of powder and binder that works best gives a paste with approximately the same consistency as toothpaste...
Abstract
This article focuses on the axisymmetric 2.5-dimensional approach used in metal powder injection molding (PIM) simulations. It describes three stages of PIM simulations: filling, packing, and cooling. The article discusses the process features of numerical simulation of PIM, such as filling and packing analysis, cooling analysis, and coupled analysis between filling, packing, and cooling stages. It explains the experimental material properties and verification for filling, packing, and cooling stages in the PIM simulations. The article presents simulation results from some of the 2.5-dimensional examples to demonstrate the usefulness of the computer-aided engineering analysis and optimization capability of the PIM process.
Book Chapter
Furnace Atmospheres for Heat Treating
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... 2 atmosphere at different temperatures The aforementioned reactions will proceed until equilibrium is established. These reactions progress at a rate depending on time, temperature, and pressure of the system. The equilibrium conditions for carbon steels of various carbon concentrations...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Book Chapter
Green Sand Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005243
EISBN: 978-1-62708-187-0
... are used for sand compaction. Some fill the flask pneumatically prior to compaction. Green strengths for these systems generally run in the 175 to 240 kPa (25 to 35 psi) range. Methylene blue clay levels typically run from 8 to 12%. The third group, that is, the high-pressure or high-density molding...
Abstract
Green sand molding and chemically bonded sand molding are considered to be the most basic and widely used mold-making processes. This article describes the sand system formulation, preparation, mulling, mold fabrication, and handling of green sand molds. It lists the advantages and disadvantages of green sand molding. The article discusses the primary control parameters for the sand system formulation. It describes two basic types of green sand molds: flask molds and flaskless molds. The article provides a discussion on molding problems, including springback and expansion defects. It considers a variety of sand reclamation systems, including wet washing/scrubbing and thermal-calcining/thermal-dry scrubbing combinations.
Book Chapter
Powder Metallurgy Processing by Hot Isostatic Pressing
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006042
EISBN: 978-1-62708-175-7
... in.) high and was capable of achieving 69 MPa (10 ksi) pressure using helium as a pressure transfer medium. Source: Ref 8 In 1982, Clauer et al. reported that the use of HIP for the consolidation of powders was a natural outgrowth of the fabrication of nuclear materials ( Ref 8 ). Citing early...
Abstract
This article discusses metal powder processing via hot isostatic pressing (HIP) and HIP cladding when metal powders are being employed in the cladding process. It traces the history of the process and details the equipment, pressing cycle, and densification mechanisms for HIP. The article describes the available process routes for fabricating products using HIP and the steps involved in the production of a part via direct HIP of encapsulated gas-atomized spherical powder. It concludes with information on the microstructures of 316L stainless steel HIP powder metallurgy valve body and a list of the mechanical properties of several powder metallurgy alloys.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003402
EISBN: 978-1-62708-195-5
.... Different gate locations and conditions can be investigated to achieve the mold-filling goals. In the L-shaped mold shown in Fig. 2 , three different gate locations under the same injection pressure are analyzed to find which location results in the minimum filling time, assuming that vent(s...
Abstract
This article provides information on the classification of various composites manufacturing processes based on similar transport processes. The composites manufacturing processes can be grouped into three categories: short-fiber suspension methods, squeeze flow methods, and porous media methods. The article presents an overview of the modeling philosophy and approach that is useful in describing composite manufacturing processes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006034
EISBN: 978-1-62708-175-7
...-low system and the filling circuit system. The high-low system has a double-acting main cylinder. A regenerative circuit is used for rapid approach. Initially, the piston of the cylinder is activated by a high-volume, low-pressure pump; the fluid from the bottom of the cylinder is directed...
Abstract
Powder metallurgy compacting presses usually are mechanically or hydraulically driven, but they can incorporate a combination of mechanically, hydraulically, and pneumatically driven systems. This article provides a comparison of mechanical and hydraulic presses based on the cost, production rate, and machine overload protection. The article lists the classification of powder metallurgy parts based on complexity of shapes as suggested by the Metal Powder Industries Federation, such as Class I parts, Class II parts, Class III parts, and Class IV parts. It describes rigid tooling compaction and details the powder-fill ratio considerations for these classes. The article elaborates on the types of tooling systems and presses used for these classes. Some important factors and components used in designing a tool are also described. Finally, the article considers tool materials, including punches, core rods, and punch clamp rings.
Book Chapter
Transfer and Treatment of Molten Metal—An Introduction
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005352
EISBN: 978-1-62708-187-0
...” in this Volume). Dosing furnaces are replacing ladle furnaces and are described in the next section of this article. Another method is low-pressure filling systems for sand casting of heavy metals. In low-pressure pouring ( Fig. 9 ), the molten metal is pushed into the open mold from below. Compared...
Abstract
This article discusses various molten-metal treatments, namely fluxing, degassing, and molten-metal filtration. It focuses on various molten-metal handling systems for transporting, holding, or delivering molten metal to the mold/die system. These include launders, tundishes, holding furnaces or transport crucibles, molten-metal transfer pumps, teeming ladles, and dosing and pouring furnaces.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006141
EISBN: 978-1-62708-175-7
... in an organic multicomponent binder system, it is ideal to have a near-spherical powder (which provides a low surface area). The lower the surface area, the less binder is needed to completely coat the powder surface. Successful feedstock formulation requires the use of sufficient amount of binder to fill all...
Abstract
This article describes part selection, feedstock (powders and binders) characteristics and properties, tool design, and material and tooling for fabrication of metal powder injection molding (MIM) machines. It discusses the process parameters, operation sequence, molding machines, debinding techniques, consolidation (sintering) techniques, advantages, and limitations of MIM.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006525
EISBN: 978-1-62708-207-5
... temperature immediately before filling; S is percent solid at the end of fill; Z is a unit conversion, degree to percent; and T is the wall thickness of the casting. The casting machine system must be controlled to provide the metal pressure ( P ) and volume flow ( Q ) attainable by the particular...
Abstract
Nearly two-thirds of the aluminum castings made in North America are produced using high-pressure die casting techniques. This article compares and contrasts traditional high-pressure die casting with an improved version that uses a vacuum to pull air out of the die in order to reduce porosity in as-cast parts. It begins by describing a typical cycle for a traditional cold-chamber die casting machine, using detailed illustrations to show how gas can become trapped in the liquid metal. It then presents various remedies, ultimately focusing on vacuum die casting for the production of high-integrity parts. In addition to vacuum technology, the article discusses casting alloys, dies, and cells, and describes some of the benefits of structural die castings.
Book Chapter
Molding and Casting Processes
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006297
EISBN: 978-1-62708-179-5
.... Compared to chemically bonded molds, which can be produced at perhaps 60 to100 per hour, modern green sand plants can make a mold every 10 s. These rates follow from simple fundamentals: The bond is formed instantly simply by pressure; therefore, it is classified as a pressure-bonded system. The term...
Abstract
Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding aggregates, clays, water, and additives in green sand, chemically bonded organic resins, and inorganic binders in self-setting, thermosetting, and gas-triggered systems. It discusses three main types of reclamation systems: wet, dry, and thermal. The article concludes with a description of both nonpermanent and permanent mold processes.
Book Chapter
Hot Isostatic Pressing for Metal Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006552
EISBN: 978-1-62708-290-7
... heating of the system. The pressure vessel stays cool during the process by water cooling from the outside of the vessel. Earlier HIP equipment were hot-wall systems; the pressure vessel was heated from the outside. This concept limited maximum temperature, pressure, and size, because the mechanical...
Abstract
Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications, economics, and advantages of the process. The discussion also covers the use of HIP for additively manufactured material to eliminate internal defects, the HIP parameters required to eliminate internal defects, and the influence of HIP on the microstructure and properties of HIP additively manufactured material.
1