Skip Nav Destination
Close Modal
By
Curtis W. Hill, Yong Lin Kong, Hayley B. Katz, David H. Sabanosh, Majid Beidaghi ...
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
By
Ruban Whenish, Pearlin Hameed, Revathi Alexander, Joseph Nathanael, Geetha Manivasagam
Search Results for
nanomaterial characterization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
nanomaterial characterization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006012
EISBN: 978-1-62708-172-6
... deposition coating electrical properties electrodeposition health and safety mechanical properties nanomaterial characterization sol-gel process ONGOING RESEARCH in the areas of nanotechnology and so-called smart or intelligent coating systems is showing great potential for the development of new...
Abstract
Nanotechnology and smart-coating technologies have been reported to show great promise for improved performance in critical areas such as corrosion resistance, durability, and conductivity. This article exemplifies nanofilms and nanomaterials used in coatings applications, including carbon nanotubes, silica, metals/metal oxides, ceramics, clays, buckyballs, graphene, polymers, titanium dioxide, and waxes. These can be produced by a variety of methods, including chemical vapor deposition, plasma arcing, electrodeposition, sol-gel synthesis, and ball milling. The application of nanotechnology and the development of smart coatings have been dependent largely on the availability of analytical and imaging techniques such as Raman spectroscopy, scanning and transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... resolution of surface properties such as height, electron tunneling current, electrostatic force, magnetic force, etc. 0.2–10 nm 10–80 pm Broad usage in research and development of nanomaterials, applications of nanotechnology, and micromanufacturing that involves understanding, characterization...
Abstract
This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm. A quick reference summary of surface-analysis methods is presented in this article.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006670
EISBN: 978-1-62708-213-6
... Abstract This article introduces various techniques commonly used in the characterization of semiconductors, namely single-crystal, polycrystalline, amorphous, oxide, organic, and low-dimensional semiconductors and semiconductor devices. The discussion covers material classification...
Abstract
This article introduces various techniques commonly used in the characterization of semiconductors, namely single-crystal, polycrystalline, amorphous, oxide, organic, and low-dimensional semiconductors and semiconductor devices. The discussion covers material classification, fabrication methods, sample preparation, bulk/elemental characterization methods, microstructural characterization methods, surface characterization methods, and electronic characterization methods.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006895
EISBN: 978-1-62708-392-8
... nanofibers NANOMATERIALS are defined as objects that have at least one dimension between 1 and 100 nm. Nanomaterials exhibit a range of unique electrical, optical, magnetic, chemical, structural, and mechanical properties ( Ref 1 – 3 ). As such, nanomaterials herald a new generation of functional...
Abstract
This article discusses electrospinning as a method for obtaining nanofibers, some of the challenges and limitations of the technique, advancements in the field, and how it may be used in key functional applications. The key drawbacks of traditional electrospinning processes include relatively slow speed of nanofiber production, low product yield, and relatively high cost. The article also addresses novel high-throughput techniques and methods designed for the scalable synthesis of nanofibers and nanofibrous mats that are of reasonable cost.
Book Chapter
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006980
EISBN: 978-1-62708-439-0
... characterize variations in elemental concentrations across the cabin environment. In contrast, postage-stamp-sized sensors are small, have very low power requirements, and, if calibrated properly, will provide reliable measurements of gases and vapors across a volume. (It is possible to deploy multiple printed...
Abstract
Additive manufacturing (AM) has been adopted as one of the most versatile and rapid design-to-manufacturing approaches for printing a wide range of two- and three-dimensional parts, devices, and complex geometries layer by layer. This article provides insights into the current progress, challenges, and future needs of AM of electronics from the space, defense, biomedical, energy, and industry perspectives.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
..., electron tunneling current, electrostatic force, magnetic force, etc. 0.2–10 nm 10–80 pm Broad usage in research and development of nanomaterials and applications of nanotechnology and micromanufacturing that involves understanding, characterization, and manipulating surfaces at atomic or nanometer...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... composites, nanomaterials, and related substances, which are complex and rely on multiple methods for thorough characterization, have only increased. Consequentially, a great number of the techniques available for the characterization of inorganic solids, liquids, effluents, and other materials are also...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... in Solvent Mixtures , J. Polym. Sci. , A-2, Vol 5 , 1967 , p 230 10.1002/pol.1967.160050119 17. Thomas S. , Thomas R. , Zachariah A. , and Kumar R. , Thermal and Rheological Measurement Techniques for Nanomaterials Characterization , Elsevier , 2017 , pp 51 – 65 18...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006401
EISBN: 978-1-62708-192-4
..., and nanomaterials. The article also reviews the properties of lubricants. It describes the tribological evaluation of lubricants, including stribeck test, four-ball test, block-on-ring test, pin-in-vee test, and reciprocating motion test. lubrication coefficient of friction hydrodynamic lubrication...
Abstract
This article provides a brief introduction to lubrication as a method to reduce friction between two surfaces. It discusses the surface characteristics of parts and explores how lubrication helps separate two contacting surfaces and thereby decreases the coefficient of friction. The article details the classifications of lubrication regimes, namely, boundary, mixed, hydrodynamic, and elastohydrodynamic lubrications. It discusses the various types of lubricant materials and additives, including liquid lubricants, solid lubricants, gaseous lubricants, greases, green lubricants, and nanomaterials. The article also reviews the properties of lubricants. It describes the tribological evaluation of lubricants, including stribeck test, four-ball test, block-on-ring test, pin-in-vee test, and reciprocating motion test.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005728
EISBN: 978-1-62708-171-9
... Abstract Materials resulting from thermal spray processes are often different from their wrought, forged, and cast counterparts. Assessing the usefulness of thermal spray coatings requires understanding, developing, and using appropriate testing and characterization methods that are generally...
Abstract
Materials resulting from thermal spray processes are often different from their wrought, forged, and cast counterparts. Assessing the usefulness of thermal spray coatings requires understanding, developing, and using appropriate testing and characterization methods that are generally borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides information on how the materials themselves respond to the various test methods. The article focuses on the test methods themselves, including those test parameters that can be varied and the influence of each on the results obtained.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
.... A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation. biocompatibility biomaterials cardiac pacemakers cardiovascular applications ceramics...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003711
EISBN: 978-1-62708-182-5
... are defined as the elements, constituents, or substances of which something is composed or made. The study of materials can be divided into three overlapping fields: Materials science , concerned with the basic understanding and characterization of materials Materials technology , concerned...
Abstract
This article presents an overview of the science and engineering of materials along with suitable definitions, descriptions, and examples for better understanding for corrosionists with limited field knowledge. It begins with a detailed description of various categories of engineering materials and moves into the discussion of physical properties of materials, such as the phases, strength, conductivity, and wear. The article describes the methods used in the fabrication of engineering materials and summarizes the materials and their properties in a tabular form. The article concludes with information on material design, materials applications, and materials failure analysis.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006897
EISBN: 978-1-62708-392-8
... is defined as bipedal, biphasic forward propulsion of the center of gravity of the human body in which there are alternate sinuous movements of different body segments with the least expenditure of energy. Different gait patterns are characterized by differences in limb-movement patterns, overall velocity...
Abstract
An ankle-foot orthosis (AFO) is a support designed to regulate the ankle's position and mobility, compensate for weakness, or rectify abnormalities. This article focuses on the biomechanical affects and mechanical properties of custom-made 3D-printed AFOs and compares them to traditionally created AFOs. Investigations in the fields of 3D scanning, 3D printing, and computer-aided design and analysis for the production of custom-made AFOs are also covered.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006904
EISBN: 978-1-62708-392-8
.... It describes the methods for characterizing the performance of bioink formulations and the effectiveness of crosslinking strategies. The topics covered include modalities of bioprinting, characteristics of bioink, rheological properties of bioink sols, rheological measurements, mathematical models of bioink...
Abstract
The field of bioprinting is a subset of additive manufacturing (AM) that is rapidly expanding to meet the needs of regenerative medicine and tissue engineering. Bioprinting encompasses a broad spectrum of issues, from cell expansion and novel bioink development to cell/stem cell printing, from organoid-based tissue organization to bioprinting of human-scale tissue structures, and from building cell/tissue/organ-on-a-chip to biomanufacturing of multicellular engineered living systems. This article focuses on two challenges regarding bioprinting: bioinks and crosslinking. It describes the methods for characterizing the performance of bioink formulations and the effectiveness of crosslinking strategies. The topics covered include modalities of bioprinting, characteristics of bioink, rheological properties of bioink sols, rheological measurements, mathematical models of bioink rheology, postfabrication polymer network mechanics, mechanical properties of crosslinked bioinks, and printability of bioinks. Finally, specific strategies used for crosslinking bioinks, as well as some emerging strategies to further improve bioinks and their crosslinking, are summarized.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... and crack defects in the Bakelite. Therefore, additives are one of the key reasons for the commercial success of polymeric materials. Types of Additives Additives can be characterized into four main categories, with several different subcategories ( Fig. 1 ). Some of the most common additives include...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Book Chapter
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006883
EISBN: 978-1-62708-392-8
... deposition. This article discusses the processes involved in polymer powder 3D printing using laser fusion/ sintering and fusing agents and energy, as well as the thermally fused PBF. It provides information on polymer powder parameters and modeling, the powder-handling system, powder characterization...
Abstract
According to International Organization for Standardization (ISO)/ASTM International 52900, additive manufacturing (AM) can be classified into material extrusion, material jetting, vat photo polymerization, binder jetting, sheet lamination, powder-bed fusion (PBF), and directed-energy deposition. This article discusses the processes involved in polymer powder 3D printing using laser fusion/ sintering and fusing agents and energy, as well as the thermally fused PBF. It provides information on polymer powder parameters and modeling, the powder-handling system, powder characterization, the flowability of powder feedstock, and polymer part characteristics. The article describes the types of polymers in PBF, the processes involved in powder recycling, and the prospects of PBF in AM. In addition, the biomedical application of polyether ether ketone (PEEK) is also covered.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006633
EISBN: 978-1-62708-213-6
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... et al. published a comprehensive study on the synthesis, characterization, and properties of such supramolecular functional polymeric biomaterials ( Ref 77 , 82 ). Recent Advances—Integration of Microfluidic Techniques Despite having a controllable geometric structure, pore size, shape...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006547
EISBN: 978-1-62708-290-7
... concept and EGT devices; (b) optical pictures of a printed poly(3-hexylthiophene-2,5-diyl) (P3HT) film as well as poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and ion gel EGTs. Source: Ref 29 . (c) thickness-controlled P3HT film characterized by optical microscopy Fig. 4...
Abstract
Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects were the most commonly mentioned within the included articles and were identified as being the most relevant for a comprehensive performance assessment: printing process, line width, overspray, complex surface compatibility, diversity of printable materials, and deposition rate. This article is an account of the results of this comparison study in terms of printing capabilities, ink requirements, and economic aspects.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... in materials research, forensics, failure analysis, geological studies, biological imaging, metallurgy, nanomaterials development, microelectronics, and fractography. Scanning electron microscopes are a common instrument in most materials characterization laboratories and are increasingly used for immediate...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
1