Skip Nav Destination
Close Modal
Search Results for
multiple-roll rotary straightening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 69
Search Results for multiple-roll rotary straightening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005137
EISBN: 978-1-62708-186-3
... of tube straightening techniques, namely, press straightening, parallel-roll straightening, two-roll rotary straightening, multiple-roll rotary straightening, and ovalizing in rotary straighteners. multiple-roll rotary straightening parallel-roll straightening press straightening tubing...
Abstract
Tubing of any cross-sectional shape can be straightened by using various equipment and techniques. This article provides a discussion on principal factors that influence the procedures and tooling of tube straightening. It describes the tooling and application of different types of tube straightening techniques, namely, press straightening, parallel-roll straightening, two-roll rotary straightening, multiple-roll rotary straightening, and ovalizing in rotary straighteners.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
... shoes while the straight or convex roll bends the tube between the ends of the concave roll. The maximum deflection depends on the depth and the skew angle of the concave roll. Multiple-Roll Rotary Straightening Rotary straighteners with five, six, or seven rolls are also used in straightening...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005136
EISBN: 978-1-62708-186-3
... straightening moving-insert straightening parallel-rail straightening parallel-roll straightening presses rotary straighteners straightening stretching structural shapes twisting BARS, bar sections, structural shapes, and long parts are straightened by bending, twisting, or stretching. Deviation...
Abstract
Bars, structural shapes, and long parts are straightened by bending, twisting, or stretching. This article describes the straightening of bars, shapes, and long parts by material displacement, heating, and presses. It explains the process of parallel-roll straightening, automatic press roll straightening, moving-insert straightening, parallel-rail straightening, and epicyclic straightening. The article concludes with a discussion on straightening in bar production.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005138
EISBN: 978-1-62708-186-3
... of the ASM Handbook , 2005. Operations other than bending that are performed on wire include: Threading with single-head or multiple-head chasers, or with flat-die or rotary-die roll threaders. Roll dies can also be used for knurling, pointing, and chamfering. Heading in open-die rod headers...
Abstract
This article describes the operation procedures of wire rolling in a Turks Head machine. It discusses spring coiling, as well as the manual and power bending used in the wire forming process. The article contains a table that lists examples of several wire-forming production problems and solutions. Lubricants for wire forming such as inorganic fillers, soluble oils, and boundary lubricants are reviewed. The article also analyzes the applications of lubricants in wire forming.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005165
EISBN: 978-1-62708-186-3
... to those on stamping presses. The primary difference is that in a multiple-slide machine the rolls are mounted vertically to straighten the work metal as it passes through the machine on edge, instead of horizontally as in a conventional press (see the article “Multiple-Slide Machines and Tooling...
Abstract
Multiple-slide forming is a process in which the workpiece is progressively formed in a combination of units that can be used in various ways for the automated fabrication of a large variety of simple and intricately shaped parts from coil stock or wire. This article discusses the components of multiple-slide rotary forming machines involved in the blanking and forming of strip stock. It describes a complicated application of the two-level forming, with an example.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003751
EISBN: 978-1-62708-177-1
... to determine the cause of a roll failure. Case examples are given later in this article. One example involved a spalling and breakage problem in D2 tool steel rolls for a rotary straightener used to straighten railroad rails in production. In the case of D2 steel rolls, the steel is very hard and has...
Abstract
This article discusses the advantages and disadvantages of field metallography and describes the important material characteristics and other aspects to be considered before performing any metallographic procedure. It investigates the various stages of sample preparation in the metallographic laboratory: grinding, polishing, etching, preparing a replica, and obtaining a small sample. The article also illustrates the applications of field metallography with case studies.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005126
EISBN: 978-1-62708-186-3
... and can also be rotated about an axis. Most straighteners employed for contour roll forming are either of the roll type or the shoe type. A roll straightener consists of multiple rolls (individually adjustable) arranged to contact the stock in selected areas. A shoe straightener consists of one...
Abstract
Contour roll forming is a continuous process for forming metal from sheet, strip, or coiled stock into desired shapes of uniform cross section by feeding the stock through a series of roll stations equipped with contoured rolls. This article discusses the materials, roll-forming machines, tooling, and auxiliary equipment used in contour roll forming and its process variables. Tooling used in roll forming includes forming rolls and dies for punching and cutting off the material. The article discusses the additional tooling required in tube mills to weld, size, and straighten the tubes as they are produced on the machine. It describes the roll design for tube rolling and reviews the seam welding operations of pipe and tubing. The article discusses cross-sectional tolerances, the reshaping of round tubing, and factors that affect the quality, accuracy, and surface finish.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005112
EISBN: 978-1-62708-186-3
... describes the roles of automatic handling equipment that can be categorized as feeding equipment, unloading equipment, and transfer equipment. It concludes with information on the common types of high-production presses, such as dieing machines, multiple-slide machines, transfer presses, fine blanking...
Abstract
This article describes the various types of press construction and the factors that influence the selection of mechanically or hydraulically powered machines for producing parts from sheet metal. Presses are broadly classified, according to the type of frame used in their construction, into two main groups: gap-frame presses and straight-side presses. The article describes the various components of mechanical presses and hydraulic presses. It discusses important factors, such as the size, force, energy, and speed requirements, that influence the selection of a press. The article describes the roles of automatic handling equipment that can be categorized as feeding equipment, unloading equipment, and transfer equipment. It concludes with information on the common types of high-production presses, such as dieing machines, multiple-slide machines, transfer presses, fine blanking presses, and flexible-die forming presses.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003983
EISBN: 978-1-62708-185-6
... to the number of rolls multiplied by the speed (rpm) of the swager spindle multiplied by a correction factor of 0.6, which allows for creep of the roll rack. Fig. 5 Designs of four different backer cams used in rotary swaging. (a) Conventional impact-type backer (flat sides). (b) Squeeze-type backer...
Abstract
Rotary swaging is an incremental metalworking process for reducing the cross-sectional area or otherwise changing the shape of bars, tubes, or wires by repeated radial blows with two or more dies. This article discusses the applicability of swaging and metal flow during swaging. It describes the types of rotary swaging machines, auxiliary tools, and swaging dies used for rotary swaging and the procedure for determining the side clearance in swaging dies. The article presents an overview of automated swaging machines and tube swaging, with and without a mandrel. It analyzes the effect of reduction, feed rate, die taper angle, surface contaminants, lubrication, and material response on swaging operation. The article discusses the applications for which swaging is the best method for producing a given shape, and compares swaging with alternative processes. It concludes with a discussion on special applications of swagging.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
... the input material is in billet, rod, or of stock from which a forging is made; often blooming mill. A primary rolling mill used to slab form and a considerable increase in sur- called a slug or multiple. make blooms. face-to-volume ratio in the formed part occurs under the action of largely compressive...
Abstract
This article is a comprehensive collection of terms related to metalworking operations that produce shapes from forging, extrusion, drawing, and rolling operations.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005102
EISBN: 978-1-62708-186-3
... shearing is limited to cutting one workpiece at a time. As in straight-knife shearing, multiple layers cannot be sheared, because each layer prevents the necessary breakthrough of the preceding workpiece. Rotary shearing, plasma cutting, laser cutting, waterjet cutting, gas cutting, and electric arc...
Abstract
Shearing is a method for cutting a material piece into smaller pieces using a shear knife to force the material past an opposition shear knife in a progression form. This article describes the principles, attributes, and defects of straight-knife shearing. The equipment, materials used, and the operating parameters are discussed. The article provides information on the applications of rotary shearing. It concludes with a discussion on devices equipped with shearing machines for protecting personnel from the hazards of shear knives, flywheels, gears, and other moving parts.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
... or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005155
EISBN: 978-1-62708-186-3
... operation often used to section. of stock from which a forging is made; often impart an intermediate shape to a forging, bending rolls. Various types of machinery called a slug or multiple. preparatory to forging of the nal shape in the equipped with two or more rolls to form blank development. The process...
Abstract
This article is a compilation of definitions of the terms related to sheet metal forming and fabrication.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
... Orbital (rotary) forging 150–260 300–500 Spin forging 150–315 200–600 Roll forging 95–205 200–400 Hydraulic presses 315–430 600–800 Forging Methods Aluminum alloys are produced by all of the current forging methods available, including open-die (or hand) forging, closed-die...
Abstract
This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes with a discussion on the forging of advanced aluminum materials and aluminum alloy precision forgings.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
... process/equipment Die temperature °C °F Open-die forging Ring rolling 150–260 300–500 95–260 200–500 Closed-die forging Hammers 95–260 200–500 Upsetters 150–260 300–500 Mechanical presses 150–315 300–600 Screw presses 150–315 300–600 Orbital forging 150...
Abstract
Titanium alloys are forged into a variety of shapes and types of forgings, with a broad range of final part forging design criteria based on the intended end-product application. This article begins with a discussion on the classes of titanium alloys, their forgeability, and factors affecting forgeability. It describes the forging techniques, equipment, and common processing elements associated with titanium alloy forging. The processing elements include the preparation of forging stock, preheating of the stock, die heating, lubrication, forging process, trimming and repair, cleaning, heat treatment, and inspection. The article presents a discussion on titanium alloy precision forgings and concludes with information on the forging of advanced titanium materials and titanium aluminides.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005103
EISBN: 978-1-62708-186-3
... is not standardized. In this article, terms generally accepted in North America are used. Flatteners The flattener, also called a straightener, for sheet, strip, and plate, incorporates a series of parallel upper and lower work rolls in a staggered position. The entry side and exit side of the upper frame...
Abstract
Metal production mills produce flat metal sheet and strip products into coil forms that are subjected to further fabrication for shape correction. This article provides a discussion on the principle of shape correction and describes the role of various fabrication processes in shape correction. These processes include flattening, leveling, slitting, and cut-to-length.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006493
EISBN: 978-1-62708-207-5
... such as trimming, forming, repairing, cleaning, and heat treatment. aluminum alloys closed-die forging forgeability forging equipment open-die forging roll forging rotary forging FORGING was among the earliest fabricating techniques applied to aluminum. The development of metal airplanes...
Abstract
This article examines aluminum forging processes, including open-die, closed-die, upset, roll, orbital, spin, and mandrel forging, and compares and contrasts their capabilities and the associated design requirements for forged parts. It discusses the effect of key process variables such as workpiece and die temperature, strain rate, and deformation mode. The article describes the relative forgeability of the ten most widely used aluminum alloys, and reviews common forging equipment, including hammers, mechanical and screw presses, and hydraulic presses. It also discusses postforge operations such as trimming, forming, repairing, cleaning, and heat treatment.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005177
EISBN: 978-1-62708-186-3
... for contour roll forming. Simple V-bends or more intricate shapes can be formed in a press brake. Operations such as blanking, piercing, lancing, shearing, straightening, embossing, beading, wiring, flattening, corrugating, and flanging can also be carried out in a press brake. Information on press-brake...
Abstract
This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies, gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple boxlike parts, panels, flanged parts, architectural columns, fully closed parts, and semicircular parts. It examines the effect of work metal variables on results in press-brake operations. The article also reviews stock tolerances, design, and condition of machines and tools, which help in obtaining good dimensional accuracy.
1