Skip Nav Destination
Close Modal
Search Results for
multiple-layer alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 306 Search Results for
multiple-layer alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001260
EISBN: 978-1-62708-170-2
... Abstract Multiple-layer alloy electrodeposition involves the formation of an inhomogeneous alloy consisting of lamellae of different composition. This article reviews the process description, engineering parameters, characterization, and applications of multiple-layer alloys. Pulsed-current...
Abstract
Multiple-layer alloy electrodeposition involves the formation of an inhomogeneous alloy consisting of lamellae of different composition. This article reviews the process description, engineering parameters, characterization, and applications of multiple-layer alloys. Pulsed-current plating and pulsed-potential plating are also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004015
EISBN: 978-1-62708-185-6
.... The protective layer is built up as a result of nitrogen diffusing into the surface layers of the tool steel producing hard and wear-resistant nitride layer. Extrusions made of the heat treatable alloys (2 xxx , 6 xxx , 7 xxx ) are strengthened in a two-step process involving solution heat treatment...
Abstract
Aluminum and aluminum alloys are very suitable for extrusion and many types of profiles can be produced from easily extrudable alloys. This article lists the basic characteristics of aluminum and its alloys. It tabulates the aluminum extrusion alloys by series and lists the typical applications for 6xxx series aluminum extrusions. The article discusses three broad categories of extrusion profiles: solid profile, hollow profile, and semi hollow profile. It provides information on weldability and machinability, which are often considered in profile design and product performance. The article discusses different aluminum extrusion processes, such as the direct extrusion process and the indirect extrusion process. It schematically illustrates the plotting of flow stress and extrudability for several types of aluminum alloys. The article concludes with information on the heat treatment and precipitation hardening for alloys, such as 2xxx, 6xxx, and 7xxx.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... corroding or releasing nickel in harmful amounts. The key to the excellent corrosion behavior of Nitinol is establishing a nickel-free, stable oxide layer. If one simply heat treats Nitinol in air, a complex surface layer is formed that is composed of a mixture of titanium oxide and nickel-rich phases...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article describes the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
...: Deposition rate Level of dilution (the amount of substrate material intermixed with the overlay material during welding) Portability of equipment To overcome the effects of dilution on wear properties, multiple layers are often employed. Microstructurally, hardfacing alloys generally consist...
Abstract
Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type alloys. Hardfacing applications for wear control vary widely, ranging from very severe abrasive wear service, such as rock crushing and pulverizing to applications to minimize metal-to-metal wear. This article discusses the types of hardfacing alloys, namely iron-base alloys, nonferrous alloys, and tungsten carbides, and their applications and advantages.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
... a variety of techniques in order to obtain an acceptable finish and to remove the disturbed surface layer resulting from such die-sinking techniques as electrodischarge machining. However, state-of-the-art high-speed die sinking (e.g., spindle speeds of >10,000 rpm) and ultrahigh-speed die...
Abstract
This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes with a discussion on the forging of advanced aluminum materials and aluminum alloy precision forgings.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
..., not resistant Sodium hydroxide (NaOH) and potassium hydroxide (KOH) solutions do not dissolve tantalum but tend to destroy the metal by formation of successive layers of surface scale. The rate of the destruction increases with concentration and temperature. Damage to tantalum equipment has been...
Abstract
Tantalum is one of the most versatile corrosion-resistant metals known. The outstanding corrosion resistance and inertness of tantalum are attributed to a very thin, impervious, protective oxide film that forms on exposure of the metal to slightly anodic or oxidizing conditions. This article provides a discussion on the mechanism of corrosion resistance and on the behavior of tantalum in different corrosive environments, namely, acids; salts; organic compounds; reagents, foods, and pharmaceuticals; body fluids and tissues; and gases. It contains several tables that summarize the effects of acids, salts, and miscellaneous corrosive reagents on tantalum and applications for tantalum equipment in chemical, pharmaceutical, and other industries. Finally, the article presents a discussion on hydrogen embrittlement, the galvanic effects, and cathodic protection of tantalum and describes the corrosion resistance of different types of tantalum-base alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... temperatures ( T F ) Several researchers have indicated that surface compressive stresses in cold-water-quenched 7000-series plate and forging alloys can have magnitudes >200 MPa (29 ksi) using the mechanical dissection layer-removal technique ( Ref 10 , 33 , 34 , 35 ). Other investigation using...
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It examines how quench-induced residual stresses in heat treatable aluminum alloys are reduced when sufficient load is applied to cause plastic deformation. The article also shows how plastic deformation reduces residual stress.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003156
EISBN: 978-1-62708-199-3
... that consideration be given to the choice between single-layer and multiple-layer wound resistors because of the difference in rate of heat dissipation between the two styles. In design of primary electrical standards of very high accuracy, cost of resistance material is not a consideration. For...
Abstract
Electrical resistance alloys used to control or regulate electrical properties are called resistance alloys, and those used to generate heat are referred to as heating alloys. This article covers both alloy types, describing the construction and use of resistors as well as heating elements. It also discusses soldering and joining methods, sensitivity and stability factors, and various design coefficients. In addition, it provides a detailed account of the properties and applications of thermostat metals and discusses the design of resistance heaters and their operating ranges.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... orthopaedic implant is surgically installed into the human body, it is constantly bathed in extracellular tissue fluid. The oxide layer passivates the titanium and protects it from corrosion, as long as the oxide layer is not broken. Titanium and its alloys are very resistant to corrosion in physiological...
Abstract
Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its alloys and presents titanium-base biomaterials in a table. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium biomedical implant alloys are listed in a tabular form. The article presents an overview of surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... resistance of metallic biomaterials (cobalt-base, stainless steel, and titanium-base alloys) is dependent on final-stage manufacturing procedures to form suitably protective passive oxide layers by using prescribed surface preparation methods as a final stage of implant fabrication (ASTM F86-04, “Standard...
Abstract
This article reviews some concepts considered important for an understanding of processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes the solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, stacking faults and twins and their role in this transformation. It also includes strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
.... Titanium alloy precision forgings are now produced with very thin webs and ribs; sharp corner and fillet radii; undercuts, backdraft, and/or contours; and, frequently, multiple parting planes (which may optimize grain flow characteristics) in the same manner as aluminum alloy precision forgings. Fig...
Abstract
Titanium alloys are forged into a variety of shapes and types of forgings, with a broad range of final part forging design criteria based on the intended end-product application. This article begins with a discussion on the classes of titanium alloys, their forgeability, and factors affecting forgeability. It describes the forging techniques, equipment, and common processing elements associated with titanium alloy forging. The processing elements include the preparation of forging stock, preheating of the stock, die heating, lubrication, forging process, trimming and repair, cleaning, heat treatment, and inspection. The article presents a discussion on titanium alloy precision forgings and concludes with information on the forging of advanced titanium materials and titanium aluminides.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... atmosphere (oxygen activity), temperature, and time. The value of x therefore varies as a function of the particular oxidizing species (oxygen, CO 2 , and CO mixtures) or mixtures thereof. As the oxide scale grows, the outer layers in contact with the oxide/gas interface gradually increase in oxygen...
Abstract
This article reviews general corrosion of uranium and its alloys under atmospheric and aqueous exposure as well as with gaseous environments. It describes the dependence of uranium and uranium alloy corrosion on microstructure, alloying, solution chemistry, and temperature as well as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology of hydride corrosion of uranium are discussed. The article provides information on environmentally assisted cracking, protective coatings, and surface modification of uranium and its alloys. It also summarizes the environmental, safety, and health considerations for their use.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003247
EISBN: 978-1-62708-199-3
... depth of the disturbed layer. Dry and clean with concentrated nitric acid if required. Microethcing of lead-antimony alloys containing up to 2% antimony 10 parts hydrogen peroxide (30%) 3 3 parts acetic acid (glacial) Etch by immersing specimen in solution for 6–15 s. Dry with alcohol...
Abstract
This article describes the metallographic technique for nonferrous metals and special-purpose alloys. These include aluminum alloys, copper and copper alloys, lead and lead alloys, magnesium alloys, nickel and nickel alloys, magnetic alloys, tin and tin alloys, titanium and titanium alloys, refractory metals and alloys, zinc and zinc alloys, and wrought heat-resisting alloys. The preparation of specimens for metallographic technique includes operations such as sectioning, mounting, grinding, polishing, and etching of nonferrous metals and alloys. The article contains tables that list the etchants for macroscopic examination and microscopic examination of nonferrous metals and special-purpose alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003998
EISBN: 978-1-62708-185-6
... during heating in air, as indicated by white powdery layer on the surface of the forging, is observed above 470 °C (880 °F). Because forging temperatures are well below the melting points of the various alloys, no fire hazard exists when temperatures are controlled with reasonable accuracy. However...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... superalloys, commonly in the range of 620 to as high as 1040 °C (1150 to 1900 °F), is usually done in box furnaces, with or without protective atmospheres. During aging heat treatment, air is the most common atmosphere. The smooth, tight oxide layer that is formed is usually unobjectionable on the finished...
Abstract
Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing, quenching, coating diffusion, and precipitation. It describes the three general strengthening mechanisms, namely, solid-solution hardening, age hardening, and carbide precipitation. The article summarizes the typical heat treatment of the general families of nickel-base castings used in industrial applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic, endothermic, dry hydrogen, dry argon, and vacuum.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
... films. The passive films are believed to be a mixture of chromium-molybdenum-rich oxides or hydroxides formed on the surface of the alloy. This is supported by recent studies that indicate that the presence of a segregated oxide film, which had an inner nickel/chromium-rich layer, was mainly responsible...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005307
EISBN: 978-1-62708-187-0
... of the launder. Metal conveyance throughout the launder system into the machine-feed furnace is free from turbulence. The metal is moved smoothly and continuously under a protective layer of stationary metal oxides. Most important, metal temperature fluctuations are virtually eliminated. In...
Abstract
This article describes the control of alloy composition and impurity levels in die casting of zinc alloys based on agitation, use of foundry scrap, and melt temperature and fluxing. It reviews the process considerations for the melt processing of the zinc alloys. The process considerations include the usage of furnaces and launder system, scrap return, inclusions in zinc alloys, fluxing of zinc alloys, and galvanizing fluxes. The article discusses the materials and lubricant selection, casting and die temperature control, and trimming process used in hot chamber die casting for zinc alloys. It also reviews other casting processes for zinc alloys, such as sand casting, permanent mold casting, plaster mold casting, squeeze casting, and semisolid casting.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006268
EISBN: 978-1-62708-169-6
... takes place, may indicate that there is a difference between the GP zones formed at NA and at AA temperatures. In both cases, however, GP zones are one copper layer thick but appear larger in diameter when aged at higher temperature ( Ref 110 , 119 ). Otherwise, their structure is as described...
Abstract
This article describes the effects of alloying and heat treatment on the metastable transition precipitates that occur in age hardenable aluminum alloys. Early precipitation stages are less well understood than later ones. This article details the aging sequence and characteristics of precipitates that occur in the natural aging and artificial aging of Al-Mg-Si-(Cu) alloys, Al-Mg-Cu alloys, microalloyed Al-Mg-Cu-(Ag, Si) alloys, aluminum-lithium-base alloys, and Al-Zn-Mg-(Cu) alloys. Crystal structure, composition, dimensions, and aging conditions of precipitates are detailed. Effects of reversion, duplex annealing, and retrogression and re-aging are included.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
... residual-stress relief must be weighed against possible effects deleterious to high-temperature properties and corrosion resistance. Another difference between wrought and cast is the frequent use of multiple aging treatments for wrought alloys. For example, a principal reason for an intermediate two...
Abstract
This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable alloys, and the effects of cold work on aging response and grain growth with examples.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005439
EISBN: 978-1-62708-196-2
... illustrate how various diffusional processes can be modeled. single-phase modeling multiphase modeling diffusion modeling binary alloys multicomponent alloys MODELING DIFFUSION in alloys can be divided into two activities. One activity is to model the changes in composition and phases that take...
Abstract
This article presents various equations that are essential for the modeling of both single-phase and multiphase profiles. It includes the fundamental laws of diffusion, along with its equations and solutions. The article provides information on the series of applications that illustrate how various diffusional processes can be modeled.