Skip Nav Destination
Close Modal
Search Results for
multiple spot welding machines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 415
Search Results for multiple spot welding machines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001363
EISBN: 978-1-62708-173-3
... of spot welding and the three principal elements, such as electrical circuit, control circuit, and mechanical system, of RSW machines. It reviews the three basic types of RSW machines: pedestal-type welding machines, portable welding guns, and multiple spot welding machines. The article provides...
Abstract
Resistance spot welding (RSW) is a process in which faying surfaces are joined in one or more spots by the heat generated by resistance to the flow of electric current through workpieces that are held together under force by electrodes. This article discusses the major advantages of spot welding and the three principal elements, such as electrical circuit, control circuit, and mechanical system, of RSW machines. It reviews the three basic types of RSW machines: pedestal-type welding machines, portable welding guns, and multiple spot welding machines. The article provides information on weldabilily of uncoated steels and zinc-coated steels, as well as aluminum alloys.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005594
EISBN: 978-1-62708-174-0
..., it is necessary to ensure that the type and dimensions of cables are chosen to achieve the best balance between the total circuit resistance and the electrode life to be obtained with a multiple spot welder. Single-Weld Configurations Most pedestal and portable gun-welding machines employ direct welding...
Abstract
Resistance spot welding (RSW) is the most widely used joining technique for the assembly of sheet metal products. This article discusses the process description, evaluation methods, and applications of RSW. It describes the equipment needed for RSW and explicates the major functions of electrodes in RSW and effect of surface condition on the technique. The article concludes with information on the safety precautions to be followed during the welding process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003207
EISBN: 978-1-62708-199-3
... projection welding, and flash welding. flash welding process variables resistance projection welding resistance seam welding resistance spot welding welding equipment welding machine welding parameters Resistance Spot Welding RESISTANCE SPOT WELDING (RSW) is a process in which faying...
Abstract
This article presents a detailed account of the welding parameters, equipment needed, applications, advantages, limitations, and the process variables affecting various types of resistance welding operations, namely, resistance spot welding, resistance seam welding, resistance projection welding, and flash welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005607
EISBN: 978-1-62708-174-0
... particular machine, other parameters to be considered when selecting a suitable welder are power level and configuration. Larger sections require higher power levels and clamping force. For instance, spot welding of 1 mm (0.04 in.) thick aluminum alloy requires a minimum of 2500 W and approximately 150 N (34...
Abstract
Ultrasonic metal welding is a solid-state welding process that produces coalescence through the simultaneous application of localized high-frequency vibratory energy and moderate clamping forces. This article discusses the parameters to be considered when selecting a suitable welder for ultrasonic metal welding. It details the personnel requirements, advantages, limitations, and applications, namely, wire welds, spot welds, continuous seam welds, and microelectronic welds of ultrasonic metal welding.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006514
EISBN: 978-1-62708-207-5
... alloys, because they provide precise control of short weld times and high welding currents. Magnetic and mechanical controls are not suitable. Low-inertia welding head for rapid followup of electrode force Slope control (for single-phase welding machines) Multiple-electrode-force system...
Abstract
The resistance welding processes commonly employed for joining aluminum are resistance spot welding, resistance seam welding, resistance roll welding, upset and flash welding for butt joining welding, and high-frequency resistance welding. This article discusses the general factors affecting resistance welding: electrical and thermal conductivities, rising temperature, plastic range, shrinkage, and surface oxide. It reviews the weldability of base materials such as Alclad alloys and aluminum metal-matrix composites. The article describes the joint design and welding procedures for resistance spot welding, as well as the joint type, equipment, and welding procedures for seam and roll spot welding. It concludes with information on flash welding, high-frequency welding, and cross-wire welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001378
EISBN: 978-1-62708-173-3
... oxides form. Many devices have been developed for cold pressure butt welding. There are hand-held tongs for wires in diameters up to 1 mm (0.04 in.) and even an oil-hydraulically powered welding machine with a programmable device to interface with a multiple-step upsetting system. The largest known...
Abstract
Cold pressure welding can be accomplished by deforming in a lap or butt configuration, drawing, extrusion, and rolling. This article provides a discussion on cold pressure lap welding, cold pressure butt welding and cold pressure welding in drawing process with illustrations. It provides information on the combinations of metals that can be successfully cold welded.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001443
EISBN: 978-1-62708-173-3
... cross-wire welding flash welding high-frequency resistance welding projection welding resistance seam welding resistance spot welding resistance welding seam welding machines stainless steels upset welding welding electrodes RESISTANCE WELDING (RW) encompasses a group of processes...
Abstract
Resistance welding (RW) encompasses a group of processes in which the heat for welding is generated by the resistance to the flow of electrical current through the parts being joined. The three major resistance welding processes are resistance spot welding (RSW), resistance seam welding (RSEW), and projection welding (PW). This article addresses the considerations for using these processes to join specific types of materials. It discusses the process variations, applicability, advantages, and limitations of these resistance welding processes. The article provides information on flash welding, high-frequency resistance welding, and capacitor discharge stud welding. It concludes with a discussion on resistance welding of stainless steels, aluminum alloys, and copper and copper alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001365
EISBN: 978-1-62708-173-3
... process control projection welding reinforced roll spot welding resistance seam weld machines resistance seam welding resistance spot welding roll spot welding weld quality RESISTANCE SEAM WELDING (RSEW) is a process in which heat generated by resistance to the flow of electric current...
Abstract
Resistance seam welding (RSEW) is a process in which the heat generated by resistance to the flow of electric current in the work metal is combined with pressure to produce a welded seam. This article discusses the various classes of the RSEW process, namely roll spot welding, reinforced roll spot welding, and leak-tight seam welding. It provides information on the applications of lap seam weld, mash seam weld, and butt seam weld. The article reviews the advantages and limitations of seam welding compared to resistance spot welding, projection welding, and laser welding. It describes the four basic types of resistance seam weld machines: circular, longitudinal, universal, and portable. The article concludes with a discussion on weld quality and process control for seam welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005608
EISBN: 978-1-62708-174-0
... together under pressure by circular electrodes. The resulting weld is a series of overlapping spot welds made progressively along a joint by rotating the electrodes.” Seam welding machines are capable of making two types of lap joint. A continuous, pressure-tight joint ( Fig. 1 ) is produced...
Abstract
This article describes the process applications, advantages, and limitations of resistance seam welding. The fundamentals of lap seam welding are also reviewed. The article details the types of seam welds, namely, lap seam welds and mash seam welds, and the processing equipment used for lap seam welding. The primary factors used to determine the selection of electrodes, including alloy type and wheel configuration, are reviewed. The article also describes weld quality and process control procedures.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001384
EISBN: 978-1-62708-173-3
... plasticity in the weld interface is produced. Process Variations and Limitations Variations of the USW process produce different weld geometries. There are spot, line, continuous seam, and ring welding machines. Two other versions of spot welding machines are used to join microelectronic components...
Abstract
This article begins with a discussion on the advantages and limitation of ultrasonic welding (USW). It describes variations of the USW process which can produce different weld geometries. These variations are helpful in producing spot welds, line welds, continuous seam welds, ring welds, and microelectronic welds. The article provides information on the functions of USW personnel and describes the special conditions in USW which include the condition of the surface, the use of an interlayer, and the control of resonance. It concludes with a description on the weld quality, the influencing factors, surface appearance and deformation, and metallographic examination.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001472
EISBN: 978-1-62708-173-3
... on the metal surface before welding may also become entrapped.) Slag inclusions can be found near the surface and in the root of a weld ( Fig. 3a ), between weld beads in multiple-pass welds ( Fig. 3b ), and at the side of a weld near the root ( Fig. 3c ). Fig. 3 Sections showing locations of slag...
Abstract
This article provides an overview of the types of weld discontinuities that are characteristic of specialized welding processes. These welding processes include electron-beam welding, plasma arc welding, electroslag welding, friction welding, resistance welding, and diffusion welding. The article also describes the common inspection methods used to detect these discontinuities.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating. computer-aided design dynamic beam deflection electron beam electron beam direct manufacturing system high-frequency multibeam process multiple-pool...
Abstract
This article focuses on the use of electron beam (EB) for near-net shape processing based on the wire feed material-delivery method. EB deposition processes start with a 3-D model designed in a computer-aided design (CAD) environment, where the deposition path and process parameters are generated. The article provides a description of the electron beam direct manufacturing (EBDM) system used for manufacturing of target parts with the aid of a case study. The control of the essential variables of dynamic beam deflection is also reviewed. The article also includes information on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005640
EISBN: 978-1-62708-174-0
... force in operation and is affected by the friction and inertia of the moving parts of the welding machine. The workpieces to be spot welded must be held tightly together at the indented location of the weld to allow passage of current. Because increasing the electrode force decreases the contact...
Abstract
This article describes the significance of the three variables that affect the resistance spot welding process: welding current, electrode force, and welding time. It presents the effects of weld spacing and surface preparation on weld quality. The article elaborates the typical sequence of steps for determining the satisfactory conditions for spot welding and the mechanical aspects that affect this process. It considers the effects of process variables on the weld lobe. The article reviews surface preparation, part fit-up, electrode drives, weld parameters, and tests associated with seam welding. It concludes with a discussion on the welding equipment and other factors associated with resistance spot and seam welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005615
EISBN: 978-1-62708-174-0
... welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment. dissimilar metals electron beam welding electron beam welding machines joint design process control weld geometry...
Abstract
This article introduces the operating principles and modes of operation for high-vacuum (EBW-HV), Medium-vacuum (EBW-MV), and nonvacuum (EBW-NV) electron beam welding. Equipment, process sequence, part preparation, process control, and weld geometry are described for electron beam welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001444
EISBN: 978-1-62708-173-3
... in various joint designs for electron-beam welding, as well as special joints and welds including multiple-pass welds, tangent-tube welds, three-piece welds, and multiple-tier welds. It provides a comparison of medium vacuum EBW with high-vacuum EBW. Scanning is a method of checking the run-out between...
Abstract
Electron-beam welding (EBW) can produce deep, narrow, and almost parallel-sided welds with low total heat input and relatively narrow heat-affected zones in a wide variety of common and exotic metals. This article discusses the joint configurations and shrinkage stresses encountered in various joint designs for electron-beam welding, as well as special joints and welds including multiple-pass welds, tangent-tube welds, three-piece welds, and multiple-tier welds. It provides a comparison of medium vacuum EBW with high-vacuum EBW. Scanning is a method of checking the run-out between the beam spot and the joint to be welded. The article describes various scanning techniques for welding dissimilar metals and provides information on the application of electron-beam wire-feed process for repairs. It concludes with a discussion on EBW of heat-resistant alloys, refractory metals, aluminum alloys, titanium alloys, copper and copper alloys, magnesium alloys, and beryllium.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001369
EISBN: 978-1-62708-173-3
... distance. The article reviews the operation sequence and safety aspects of EBW. electron-beam welding electron-beam welding machines joint design weld geometry ELECTRON-BEAM WELDING (EBW) is a high-energy density fusion process that is accomplished by bombarding the joint to be welded...
Abstract
Electron-beam welding (EBW) is a high-energy density fusion process that is accomplished by bombarding the joint to be welded with an intense (strongly focused) beam of electrons that have been accelerated up to velocities 0.3 to 0.7 times the speed of light at 25 to 200 kV, respectively. This article discusses the principles of operation, as well as the advantages and limitations of EBW. It reviews the basic variables employed for controlling the results of an electron-beam weld. These include accelerating voltage, beam current, welding speed, focusing current, and standoff distance. The article reviews the operation sequence and safety aspects of EBW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005610
EISBN: 978-1-62708-174-0
... test welds on each machine and minimizes the time and cost required to move a part from development to production. Therefore, traditional methodologies that rely on multiple test welds to transfer welding parameters from development to production can be replaced by a much more streamlined methodology...
Abstract
The primary goal of quality control in electron beam (EB) welding is to consistently produce defect-free and structurally sound welds. This article discusses the common procedures for controlling the EB welding process, the control of the essential machine parameters, and the introduction of closed-loop controls and diagnostic feedback systems in the EB welding systems. It reviews the beam diagnostic tools that interrogate the beam to produce a reconstruction of the power density distribution and provide additional information on the size and shape of the EB. Knowledge of these beam parameters can be used to improve process understanding and control. The article also describes the application areas of beam diagnostics: machine characterization, weld parameter transfer, and weld quality control.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005626
EISBN: 978-1-62708-174-0
... on a large automotive exhaust clamp. These are made in less time than required for the production of a single conventional spot weld. Similarly, embossed-projection welding is highly adaptable to the joining of multiple-sheet stacks. Projection welding can be used in a wide range of hard-to-weld metal...
Abstract
Projection welding is a variation of resistance welding in which current flow is concentrated at the point of contact with a local geometric extension of one (or both) of the parts being welded. This article focuses on the process fundamentals, advantages, and limitations of projection welding and reviews the equipment used in the process. It discusses projection welding of copper and copper alloys, aluminum and aluminum alloys, and steels. The article provides several specifications and recommended weld schedules and practices for projection welding. It describes the embossed-projection welding of heavy-, intermediate-, and thin-gage sheet mild steel as well as the welds between dissimilar thickness joints. The article also considers the solid-projection welding of steels: annular, nut, and cross-wire projection configurations. It also details the various tests that can be used to validate projection weld quality.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005138
EISBN: 978-1-62708-186-3
... of these slides may be replaced with welding heads, stamping heads, drilling and tapping heads, or others as needed, depending on the part to be made. More information on forming in multiple-slide machines is available in the article “Forming of Steel Strip in Multiple-Slide Machines” in this Volume...
Abstract
This article describes the operation procedures of wire rolling in a Turks Head machine. It discusses spring coiling, as well as the manual and power bending used in the wire forming process. The article contains a table that lists examples of several wire-forming production problems and solutions. Lubricants for wire forming such as inorganic fillers, soluble oils, and boundary lubricants are reviewed. The article also analyzes the applications of lubricants in wire forming.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
...) laser setup. Source: Ref 13 Pulsed Nd:YAG Laser Welding Parameters Several key parameters are used to define the laser pulses produced by a Nd:YAG laser. In spot welding, individual pulses are defined by peak power and pulse width. During seam welding, multiple pulses are applied, with each...
Abstract
Microjoining methods are commonly used to fabricate medical components and devices. This article describes key challenges involved during microjoining of medical device components. The primary mechanisms used in microjoining for medical device applications include microresistance spot welding (MRSW) and laser welding. The article illustrates the fundamental principles involved in MRSW and laser welding. The article presents examples of various microjoining methods used in medical device applications, including pacemaker and nitinol microscopic forceps.
1