Skip Nav Destination
Close Modal
Search Results for
multiphase microstructure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 192 Search Results for
multiphase microstructure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2015
Fig. 5 Example of multiphase bronze microstructure produced by sintering 90Cu-10Sn at 770 °C (1420 °F). As-polished. Original magnification: 100×. Courtesy of SCM Metal Products, Inc.
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
... Abstract This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating...
Abstract
This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating the classification of transformations by growth processes.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003721
EISBN: 978-1-62708-177-1
... structures and macrostructure of metals and alloys. ferrous metals macrostructure multiphase microstructure nonferrous metals single-phase microstructure substructure FOR MORE THAN A CENTURY, dating back to the pioneering contributions of Henry Clifton Sorby, metallurgists have not been...
Abstract
This article provides information on the general structural features and origins of metals. The characteristic structural features of single-phase metals and alloys, such as grain structure and substructure, are discussed. The article also describes the major types of multiphase structures and macrostructure of metals and alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009080
EISBN: 978-1-62708-177-1
... in determining the material quality and in correlating the key microstructural features with material performance. Through three successive specimen-preparation techniques for the carbon-fiber-reinforced composite under analysis, the complex, multiphase resin system was completely evaluated using only reflected...
Abstract
This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation and double-pass impregnation. The article illustrates reflected-light optical microscopy techniques to evaluate the morphology of thermoplastic materials for determining the material quality and correlating key microstructural features with material performance.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... eutectic growth theory ( Ref 33 ) and is briefly summarized in the section “Eutectics and Other Multiphase Microstructures” in this article. By coupling these equations with a numerical calculation of heat diffusion in the casting, the cooling curve and the average grain size can be calculated...
Abstract
This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003741
EISBN: 978-1-62708-177-1
... into the superalloy. As seen in Fig. 1 , there is a sharp change in the volume fraction and size of the beta phase at one point in the microstructure ( Ref 2 ). Theoretical studies ( Ref 3 ) and computer simulations ( Ref 4 ) have shown that this is an expected feature when a multiphase region straddles the initial...
Abstract
Interdiffusion microstructures appear as a region on either side of the original interface of contact between two materials. This article outlines the principles used in analyzing various interdiffusion microstructures: binary systems, copper-base systems, nickel-base systems, and silicide-forming systems. The analysis can be helpful in classifying microstructures and in understanding how they change with alloy composition, especially when thermal history is known. The microstructures also help in identifying microstructural artifacts caused by polishing and in recognizing errors in reported heat treating schedules.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
..., stains provide contrast by reacting with the polymer phase or microstructure, while dyes preferentially impregnate the phase but do not react. Stains have been used to provide contrast in multiphase-matrix systems for many years. Table 2 shows some frequently used stains for high-lighting dispersed...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005536
EISBN: 978-1-62708-197-9
... and error with an understanding of the influence of microstructure—the microstructure, processing, and chemistry all being directly related to the crystallography, kinetics, and thermodynamics of the materials ( Ref 1 ). In comparatively recent years, as computational methods have evolved, it has been...
Abstract
This article focuses on the modeling and simulation of diffusion-controlled processes related to both materials processing such as heat treatments, and materials degradation from a practical perspective by using the one-dimensional (1-D) sharp interface approach. It describes various diffusion simulation models, such as one-phase simulations, moving phase-boundary simulations, and dispersed system simulations. The article presents case studies that illustrate some examples where diffusion simulations have been applied to industrial-based problems, with an emphasis on the approaches used and the lessons learned from performing such simulations.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... methods. For example, the use of field description, gradient thermodynamics, phase transformation crystallography, and microelasticity theory of nonuniform systems allows the method to account self-consistently for an arbitrarily complex multiphase microstructure with strong shape anisotropy and well...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... of dislocation-based plastic deformation in crystals. The output of the simulation yields information about the microstructure, local quantities of interest (internal stresses, dislocation densities, slip systems activity), and the global mechanical response. Laboratoire d'Etude des Microstructures http...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... microstructure optical microscopy polymer matrices prepeg materials resin film infusion resin transfer molding vacuum-assisted resin transfer molding THE UNIQUE and diverse characteristics of composite materials have caused an increase in their utilization worldwide. From featherweight fly fishing...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005439
EISBN: 978-1-62708-196-2
... Abstract This article presents various equations that are essential for the modeling of both single-phase and multiphase profiles. It includes the fundamental laws of diffusion, along with its equations and solutions. The article provides information on the series of applications...
Abstract
This article presents various equations that are essential for the modeling of both single-phase and multiphase profiles. It includes the fundamental laws of diffusion, along with its equations and solutions. The article provides information on the series of applications that illustrate how various diffusional processes can be modeled.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
...-consistent handling of multiphase, multivariant coherent microstructures with interplay among the chemical free energy, interfacial energy, and elastic energy (for example, see review in Ref 36 ). The contributing phase fields to SFTS or inelastic strain in general can be any crystalline defects...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005215
EISBN: 978-1-62708-187-0
...-Cr superalloy MICROSEGREGATION is the nonuniform distribution of alloying elements within a volume characteristic of the solidification microstructure, that is, chemical nonuniformity that can be observed and measured on the scale of the dendrite spacing and/or the grain size. The cored...
Abstract
This article discusses the two extremes of solute redistribution, equilibrium solidification and nonequilibrium Gulliver-Scheil solidification, for which solid redistribution of solute within the primary solid phase is the distinguishing parameter. The process and material parameters that control microsegregation are discussed in relation to the manifestations of microsegregation in simple and then increasingly complex alloy systems. The measurement and kinetics of microsegregation are discussed for the binary isomorphous systems: titanium-molybdenum; binary eutectic systems: aluminum-copper and aluminum-silicon; binary peritectic systems: copper-zinc; multicomponent eutectic systems: Al-Si-Cu-Mg; and for systems with both eutectic and peritectic reactions: Fe-C-Cr and nickel-base superalloy.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002459
EISBN: 978-1-62708-194-8
... of atoms or ions; this internal microstructure, along with composition, determines the properties of the material. The importance of the composition of a material in influencing its properties is readily acceptable to everyone. “What's in it” is important to the taste of our food; the same principle...
Abstract
Materials are selected and used as a result of a match between their properties and the needs dictated by the intended application. This article provides information on how the composition and structure determine the properties of materials. It describes common structural elements that are most important in materials. The article presents a historical perspective of the use of materials and illustrates the evolution of engineering materials.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
... and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses...
Abstract
This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005236
EISBN: 978-1-62708-187-0
... Abstract Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles...
Abstract
Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles and applications of the phase field method and the cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
... into the microstructure and macrostructure of fiber reinforced composites (FRC). The most widespread use of microscopy for composites is determining void content, ply counts, and fiber orientations. While this makes up the majority of analysis, the investigation of failure mechanisms and microstructural analysis is also...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
.... Pattern-based self-consistent models comprise detailed microstructural models being embedded in a larger workpiece, with the external boundary conditions being transferred to the microstructure by means of a continuum with average matrix properties. This methodology is particularly suitable for multiphase...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002485
EISBN: 978-1-62708-194-8
... as the microstructural effects on metal flow. It also discusses the defects in sheet-metal formed parts and flow-related defects in bulk forming. bulk forming chevron cracking cold working deformation deformation design flow stress formability free-surface cracking hot working microstructure plastic flow...
Abstract
This article introduces the reasons behind the selection of a deformation process as the method of choice for producing a part or product form. It discusses the advantages, disadvantages, and categories of deformation processes. The article describes the major design considerations in applying a deformation process. Some fundamental aspects of plastic flow, flow stress, cold and hot working, workability, and formability are presented. The article provides information on free-surface cracking, central burst or chevron cracking, and cracking on die contact surface, as well as the microstructural effects on metal flow. It also discusses the defects in sheet-metal formed parts and flow-related defects in bulk forming.
1