Skip Nav Destination
Close Modal
Search Results for
multidirectional loading
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 63 Search Results for
multidirectional loading
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003444
EISBN: 978-1-62708-195-5
... standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation...
Abstract
This article explores why structural element and subcomponent testing are conducted. It discusses the different types of failure modes in composites, and provides information on the testing methodology, fixturing, instrumentation, and data reporting. The article reviews various standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation are reviewed with analytical predictions. The article also provides a list of the ASTM testing standards applicable at the element level of testing for both polymer-matrix composites and metal-matrix composites. It concludes with a discussion on durability and damage tolerance testing.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006878
EISBN: 978-1-62708-387-4
... to loss of support of the load-bearing layers by the adjacent plies; consequently, the former is more prone to microbuckling ( Ref 23 ). Tension Failure in Multidirectional Laminates Most laminated composites that are used in structures have multidirectional stacking sequences. The individual...
Abstract
This article presents the failure of polymer-matrix composites and the methodology for fractography. It provides a detailed discussion on the types of translaminar, interlaminar, and intralaminar failures. The article also presents a discussion on the types of fatigue failures, and the influence of composite architecture. It provides details of the fractography associated with defects and damage.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... the design loads of the final structural component. Multidirectional fabrication technology provides the means to produce tailored composites. The simplest type of multidirectional preform is based on a three-directional orthogonal construction, which is normally used to weave rectangular, block-type...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003360
EISBN: 978-1-62708-195-5
... reinforced fabrics; hybrid fabrics; woven fabric prepregs; unidirectional and multidirectional tape prepregs; and the prepreg tow. The article discusses three major categories of tape manufacturing processes, namely, the hand lay-up, machine-cut patterns that are laid up by hand, and the automatic machine...
Abstract
This article describes the types of fabrics and preforms used in the manufacture of advanced composites and related selection, design, manufacturing, and performance considerations. The types of fabrics and preforms include unidirectional and two-directional fabrics; multidirectionally reinforced fabrics; hybrid fabrics; woven fabric prepregs; unidirectional and multidirectional tape prepregs; and the prepreg tow. The article discusses three major categories of tape manufacturing processes, namely, the hand lay-up, machine-cut patterns that are laid up by hand, and the automatic machine lay-up. It provides a description of the two classes of prepregs. These include those that are suitable for high-performance applications and suitable for lower-performance molding compounds.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
... be evaluated as to their applicability to behavior in a structure. This is particularly true for multidirectional fiber-reinforced composites. Other considerations include the influence of matrix cracking, or “first ply failure,” on design. In particular, first ply failure may occur far below ultimate...
Abstract
Testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young's modulus, and Poisson's ratio relative to principal material directions, that helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that often occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling techniques. The article also discusses the test procedures, recommended configurations, test specimen considerations, and safety requirements considered in the four major types of mechanical testing of polymer-matrix composites: tensile test, compression test, flexural test, and shear test.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... Not possible Possible Easy Not possible Possible Not possible Not possible Possible Not possible Possible Multidirectional Woven Preforms The main advantage of multidirectional CCCs is the freedom to orient selected fiber types and amounts to accommodate the design loads of the final...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
.... It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation. carbon-carbon matrix composites composite processing composites mechanical properties metal...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003379
EISBN: 978-1-62708-195-5
... composites matrix damage multidirectional laminates physics-based approach structural design THIS ARTICLE presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals...
Abstract
This article presents a comprehendable and comprehensive physics-based approach for characterizing the strength of fiber-reinforced polymer composites. It begins with background information on the goals and attributes of this method. The article then addresses the characterization of fiber failures in laminates, because these are at the highest strengths that can be attained and, therefore, are usually the design objective. An exception would be if the design goal is to maximize energy absorption, rather than static strength. The discussion proceeds to situations in which the matrix fails first, either by intent, by design error, or because of impact damage. The state of the modeling propagation and arrest of matrix damage follows. Comparisons of this physics-based approach are then made to empirically based failure theories.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004037
EISBN: 978-1-62708-185-6
... will be parallel to the principal direction of service loading. The article reviews the mutual dependence of parting line and forging process. It provides a checklist for the forging designer that suggests a systematic approach for establishing parting line location. Finally, the article contains examples...
Abstract
Control of grain flow is one of the major advantages of shaping metal parts by rolling, forging, or extrusion. This article shows the effects of anisotropy on mechanical properties. Cylindrical forgings commonly have a straight parting line located in a diametral plane. The alternate classes of parting lines are called either "straight" or "broken" for brevity. Regardless of whether draft is applied or natural, the forging will have its maximum spread or girth at the parting line. Proper placement of the parting line ensures that the principal grain flow direction within the forging will be parallel to the principal direction of service loading. The article reviews the mutual dependence of parting line and forging process. It provides a checklist for the forging designer that suggests a systematic approach for establishing parting line location. Finally, the article contains examples, with illustrations of parting line locations, accompanied by tables of design parameters.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006330
EISBN: 978-1-62708-179-5
.... Displacement was registered on a paper drum rotated by a clock, with a pen attached to levers through hinges connected to the moving pins. Due to the displacement measured along the bar in both directions, the obtained deformation is classified as multidirectional displacement. Fig. 3 Keep’s cooling...
Abstract
Solidification of cast iron alloys brings about volumetric changes. This article describes direct measurements of volume changes with an illustration of the analysis of volumetric changes during solidification of cast iron with the use of a specially designed riser combined with a furnace. It provides a discussion on the dilatometer analysis that is generally used to measure linear displacement as a function of temperature for all types of materials, and the problems associated with volume-change measurements. The article presents a graphical representation of a consequence of the anisotropy, where the calculated volume change is illustrated as a function of temperature. It concludes with a review of kinetic of graphite expansion.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
... by Shear Loading D 3479 Standard Test Method for Tension-Tension Fatigue of Polymer-Matrix Composite Materials D 3518/D 3518M Standard Practice for In-Plane Shear Response of Polymer-Matrix Composite Materials by Tensile Test of a ±45° Laminate D 3846 Test Method for In-Plane Shear Strength...
Abstract
This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods. The article also tabulates selected standards for lamina and laminate mechanical testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003038
EISBN: 978-1-62708-200-6
...; these are used to make fishing rods and electrical insulator rods, which require high axial tensile strength. The second category is structural profiles, which use a combination of axial fibers and multidirectional fiber mats to create a set of properties that meet the requirements of the application...
Abstract
Pultrusion is an automated process for manufacturing composite materials into continuous, constant cross-sectional profiles. The article provides an overview of the pultrusion process and the wide range of materials that can be used to provide a broad spectrum of composite properties. It discusses the mechanical, physical and material properties of pultruded products, and the orientation options available to utilize the properties advantageously. The article also provides guidelines for designing pultruded products.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005119
EISBN: 978-1-62708-186-3
... left-to-right between uprights), with a load equal to the rated capacity of the machine distributed over two-thirds of the bed area between tie rod centers. Deflection of the slide should not exceed 0.006 mm/mm (0.006 in./in.) of the length between the pitman centers, with rated load evenly distributed...
Abstract
This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness and work metal composition and condition on blanking and piercing. The article provides an overview of the influence of burr height on stacking factors and presents a discussion on the lubrication and core plating of electrical steels that ease the process.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
... Abstract In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing...
Abstract
In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination is a critical issue in fatigue and generally results from high interlaminar normal and shear stresses. The article schematically illustrates the structural elements in which high interlaminar stresses are common. It concludes with a discussion on the classification of fatigue models such as mechanistic or phenomenological, for composite materials under cyclic loading.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003391
EISBN: 978-1-62708-195-5
... STRUCTURAL STRENGTH is primarily driven by various forms of discontinuities. During design development, rigorous analyses are needed to predict load distribution and local stress concentrations. Many of the same structural details that cause fatigue concerns with metals require ultimate strength assessment...
Abstract
Detailed analyses and test correlations are typically required to support design development, structural sizing, and certification. This article addresses issues concerning building block levels ranging from design-allowables coupons up through subcomponents, as these levels exhibit a wide variety of test-analysis correlation objectives. At these levels, enhanced analysis capability can be used most effectively in minimizing test complexity and cost while also reducing design weight and risk. The article discusses the examples of tests for which good correlative capability has shown significant benefit. These include notched (open and/or filled hole) tension and compression, inter/intralaminar shear and tension, and pin bearing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003046
EISBN: 978-1-62708-200-6
... materials, there is a need to understand the requirements of the end users regarding repair of these advanced materials. This article focuses on the repair of graphite-epoxy structures designed in a variety of forms for a wide range of load intensities. Five repair concepts developed for generic laminate...
Abstract
Relatively limited effort has gone into developing repair processes and materials for composites, in contrast to the significant labor and expense that has gone into the development of these materials for numerous critical applications. As composites gain wider acceptance as aerospace materials, there is a need to understand the requirements of the end users regarding repair of these advanced materials. This article focuses on the repair of graphite-epoxy structures designed in a variety of forms for a wide range of load intensities. Five repair concepts developed for generic laminate repair have been validated in this article through the required environmental and load condition tests. These include bonded-scarf joint flush repair, double-scarf joint flush repair, blind-side banded-scarf repair, blind-side sandwich repair, and bonded external patch repair. A brief note on thermoplastic repair concepts is also provided in this article.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001236
EISBN: 978-1-62708-170-2
... directional characteristic, such as a parallel, circular, radial, or multidirectional pattern. The lay is an important consideration because surface topography measurements will differ depending on the direction from which they are taken. Measurement should be made perpendicular to the lay of the surface...
Abstract
Most surfaces have regular and irregular spacings that tend to form a pattern or texture on the surface. This article provides information on the general background of surface topography and discusses the different methods for measuring surface topography, namely, contact and noncontact techniques, and the focus-follow method. Examples of different types of parameters obtained and how they are applied can best be described by discussing the various types of surfaces generated by finishing methods. The surfaces include ground, turned, and milled machined surfaces; surfaces subjected to stress; bearing surfaces; plateau honed and tapped surfaces; and reflective, painted, elastic, and wear-resistant surfaces.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005330
EISBN: 978-1-62708-187-0
... mining trucks as part of the chassis, because of durability and resistance to impact loads. Steel castings in truck frames have been leveraged to minimize stress concentrations, handle multidirectional loading, and relocate welds to lower-stressed regions. Steel is commonly thought of as a high-strength...
Abstract
This article discusses the requirements that are typically considered in designing a steel casting. It describes the materials selection that forms a part of process of meeting the design criteria. The article provides information on the material selection guide for five major design applications. It examines the attributes that are specific to the manufacturing of steel castings. The article concludes with information on the various nondestructive examination methods available for ensuring manufacturing quality and part performance in steel castings.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002415
EISBN: 978-1-62708-193-1
... loading is similar to that under static loading, except that fatigue at a given stress level causes additional damage as fatigue cycles increase. Layer Cracking In multidirectional laminates under in-plane loading, failure from layer cracking usually occurs in succession from the weakest layer...
Abstract
Knowledge of fatigue behavior at the laminate level is essential for understanding the fatigue life of a laminated composite structure. This article describes fatigue failure of composite laminates in terms of layer cracking, delamination, and fiber break and interface debonding. It discusses the fatigue behavior of composite laminates in the form of a relation between applied maximum fatigue stress and fatigue life. The article explains Weibull distribution and parameters estimation for fatigue data analysis and life prediction of composite laminates. It analyzes the fatigue properties and damage tolerance of fiber-metal laminates such as ARALL and GLARE laminates. The article concludes with a discussion on the effects of fatigue on notched and unnotched specimens.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001023
EISBN: 978-1-62708-161-0
... properties. However, cast steels do not exhibit the effects of directionality on mechanical properties that are typical of wrought steels. This nondirectional characteristic of cast steel mechanical properties may be advantageous when service conditions involve multidirectional loading. Another...
Abstract
Steel castings can be made from any of the many types of carbon and alloy steel produced in wrought form. They are divided into four general groups according to composition. Carbon and low-alloy steel castings can meet a wide range of application requirements because composition and heat treatment can be selected to achieve specific combinations of properties, including hardness, strength, ductility, fatigue, and toughness. This article discusses physical, mechanical, and engineering properties as well as fatigue properties and the effects of section size and heat treatment. Highly stressed steel castings for aircraft and for high-pressure or high-temperature service must pass rigid nondestructive inspection.
1