Skip Nav Destination
Close Modal
Search Results for
multiaxial stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 174 Search Results for
multiaxial stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Fig. 3 Multiaxial stress distribution in uniform-thickness disk for a radial temperature profile typically associated with cooling. σ rr , radial residual stress; σ θθ , circumferential stress
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
... plastic case, and thermal stresses in a tube. The article illustrates the comparison of life predictions by the stress criteria and presents a simple mean diameter hoop stress equation, which is used for designing components. It also provides information on the multiaxial creep ductility of tubular...
Abstract
This article presents effective stress equations that are based on the von Mises criterion, the Tresca criterion, and the Huddleston criterion. It describes the calculation of effective stresses for different cases: elastic stresses, steady-state creep stresses, stresses in a fully plastic case, and thermal stresses in a tube. The article illustrates the comparison of life predictions by the stress criteria and presents a simple mean diameter hoop stress equation, which is used for designing components. It also provides information on the multiaxial creep ductility of tubular components and multiaxial testing methods.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed. ductile fracture multiaxial stress stress-strain curve workability WORKABILITY refers to the relative ease with which a metal can be shaped through plastic deformation...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Image
in Design Considerations for Advanced Ceramics for Structural Applications
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
(constant-stress-rate loading) data. Strength degradation in water is predicted for a dynamic load of 1 MPa/s. A mixed-mode fracture criterion was chosen to account for the change in surface flaw reliability for multiaxial stress states. Source: Ref 13
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003286
EISBN: 978-1-62708-176-4
... and rupture mechanisms in a manner that is different from uniaxial loads. Multiaxial conditions are particularly relevant for pressurized pipe and vessel components subjected to high temperatures. Hence, it is generally necessary to impose multiaxial stress conditions in creep and creep-rupture testing so...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile...
Abstract
This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile ductility and to construct failure-mechanism maps.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002366
EISBN: 978-1-62708-193-1
... normal stress-dominated growth, along with some observations regarding the influence of combined stress state on the propagation of small cracks. The article discusses the differences between low-cycle fatigue and high-cycle fatigue (HCF) behaviors. Several other features of multiaxial fatigue are also...
Abstract
This article provides information on the typical experimental observations of formation and propagation of small fatigue cracks under various stress states and explores the relation to long crack fracture mixed-mode fracture mechanics. It discusses state I crystallographic and stage II normal stress-dominated growth, along with some observations regarding the influence of combined stress state on the propagation of small cracks. The article discusses the differences between low-cycle fatigue and high-cycle fatigue (HCF) behaviors. Several other features of multiaxial fatigue are also explained, including mean stress effects, sequences of stress/strain amplitude or stress state, nonproportional loading and cycle counting, and HCF fatigue limits. In addition, the article covers the formation and propagation of cracks on the order of several grain sizes in diameter in initially isotropic and ductile structural alloys.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... uniaxial tension tests. Because most real-world structures and components are typically subjected to more complex multiaxial stress states rather than constant uniaxial load, it is important to be able to predict the creep deformation and rupture behavior under multiaxial stress condition using...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003320
EISBN: 978-1-62708-176-4
.... It provides an account of the various biaxial and multiaxial fatigue testing methods, specimen geometries, and stress intensity factors important in the study multiaxial fatigue. Widely used test methods are the torsion-rotating bending fatigue test and biaxial and triaxial fatigue tests. Common specimen...
Abstract
The main objective for the study of combined-stress fatigue is to obtain fatigue data for axles and to find the criterion for fatigue limit under combined stress. This article begins with a description of the stress states of combined stress and stress fields near crack tips. It provides an account of the various biaxial and multiaxial fatigue testing methods, specimen geometries, and stress intensity factors important in the study multiaxial fatigue. Widely used test methods are the torsion-rotating bending fatigue test and biaxial and triaxial fatigue tests. Common specimen geometries include rectangular plate specimens, cruciform specimens, compact tension shear specimens, compact shear specimens, mode II crack growth specimen, circumferentially notched cylindrical specimens, tubular specimens containing a slit, and solid cylindrical specimens containing a small hole or initial crack.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
... temperature. It reviews the traditional methods of fatigue design on smooth and notched components. The article discusses high-cycle fatigue in terms of fatigue strength and tensile strength, mean stress effects, stress concentration, and multiaxial fatigue. It describes low-cycle fatigue in terms...
Abstract
The design of components against fatigue failure may involve several considerations of irregular loading, variable temperature, and environment. This article focuses on design considerations against fatigue related to material performance under mechanical loading at constant temperature. It reviews the traditional methods of fatigue design on smooth and notched components. The article discusses high-cycle fatigue in terms of fatigue strength and tensile strength, mean stress effects, stress concentration, and multiaxial fatigue. It describes low-cycle fatigue in terms of deformation behavior and concludes with a discussion on lifetime analysis based on a strain approach.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... A. , Multiaxial Fatigue Behavior of Thermoplastics Including Mean Stress and Notch Effects: Experiments and Modeling , Int. J. Fatigue , Vol 136 , 2020 , 10.1016/j.ijfatigue.2020.105571 71. Fatemi A. and Socie D.F. , A Critical Plane Approach to Multiaxial Fatigue Damage Including Out...
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
... and multiaxial loading. deposited coatings interlayer fabrication interlayer strain interlayer thickness mechanical properties microstructure multiaxial loading shear loading soft-interlayer welds solid-state welds stress-corrosion cracking tensile loading THE UTILIZATION OF METAL INTER...
Abstract
This article discusses the mechanical properties of soft-interlayer solid-state welds and the implications of these behaviors to service stress states and environments. It illustrates the microstructure of as-deposited coatings and solid-state-welded interlayers. The article reviews factors that affect the tensile loading of strength of soft-interlayer welds: the interlayer thickness, the interlayer strain, and the interlayer fabrication method. It also provides information on stress-corrosion cracking of interlayers and stress behavior of these interlayers during shear and multiaxial loading.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001352
EISBN: 978-1-62708-173-3
... induced failure). Multiaxial Loading As discussed earlier, in tension there is significant mechanical constraint by the base material, which tends to reduce the effective stress. In torsion, where the shear stress is parallel to the plane of the interlayer, there is not constraint, other than...
Abstract
Soft-interlayer solid-state welds that join stronger base metals have unique mechanical properties that are of fundamental interest and may be of critical importance to designers. This article discusses the mechanical properties of soft-interlayer solid-state welds and the implications of these behaviors to service stress states and environments. It describes the tensile loading of soft-Interlayer welds in terms of the effect of interlayer thickness on stress, interlayer strain, time-dependent failure, effect of base-metal properties, and effect of interlayer fabrication method. The article concludes with a discussion on multiaxial loading.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... tensile stress. This expression allows the introduction of size scaling. Once size-scaling relationships are established for a simple state of stress, the relationships are extended to multiaxial states of stress. Two-Parameter Weibull Distribution and Size Effects In the ceramic and glass industry...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003269
EISBN: 978-1-62708-176-4
... multiaxial testing fasteners mill products through-thickness tests in-plane shear tests double-notched shear test motors twist transducers torque transducers torque sensors heating systems specimen preparation THE MECHANICAL BEHAVIOR of materials under complex stresses can be evaluated...
Abstract
This article reviews the common methods of shear and multiaxial testing for the evaluation of engineering components such as fasteners and mill products. It discusses shear test methods, including through-thickness tests, in-plane shear tests, and double-notched shear test. The article provides information on torsional (rotational shear) tests as well as the basic equipment and setup of torsion testing. Motors, twist and torque transducers, torque sensors, and heating systems as well as the specimen preparation procedure are also discussed.
Image
in Influence of Multiaxial Stresses on Creep and Creep Rupture of Tubular Components
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 5 Multiaxial creep test results for a pressurized P91 tube with end load at 600 °C (1100 °F) under various ratios of hoop stress to axial stress and with constant initial von Mises stress
More
Image
Published: 01 November 1995
Fig. 21 Approximate multiaxial failure envelope for monolithic ceramics. Uniaxial loadings lie on the axes. Tensile stresses are positive and compression stresses are negative. Failure occurs for any combination of σ 1 , σ 2 that lies outside the envelope. σ 1 , tensile stress; σ 2 , modest
More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005506
EISBN: 978-1-62708-197-9
... around notches and existing subcritical crack tips, and ultimately prooftesting the component prior to service. Unfortunately, both manufacturing-related and engineered residual stress states are often multiaxial, with complicated distributions throughout the entire body of the component. In fact...
Abstract
This article summarizes many approaches that are used to simulate relaxation of bulk residual stresses in components. It presents analytical examples to highlight the complexity of residual stress and strain distributions observed in simple geometries, with ideal material behavior and trivial loading and boundary conditions. The article discusses approximate and advanced solution techniques that can be employed in practice for simulation of residual stress relief: finite-difference method and finite-element method. It also describes advanced techniques applicable to transient creep, advanced constitutive models, and complicated stress and temperature loading histories.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
... are in the article “Shear, Torsion, and Multiaxial Testing” in this Volume. Complex Stresses The previous sections describe the relatively simple uniform and linear stress distributions occurring during tension, compression, torsion, bending, and shear. In all of these cases, one primary stress occurred...
Abstract
An integral aspect of designing and material selection is the use of mechanical properties derived from various mechanical testing. This article introduces the basic concepts of mechanical design and its relation with the properties derived from various mechanical testings, namely, tensile, compressive, hardness, torsion and bend, shear load, shock, and fatigue and creep testings. It describes the design criteria for combined properties derived from each of the mechanical testing. The article concludes with a discussion on the effect of environment on the mechanical properties.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003399
EISBN: 978-1-62708-195-5
..., is available, such that any multiaxial stress state can be analyzed. Note that off-axis loading is simply a case of multiaxial loading of a unidirectional lamina. The input requirements for the program are the elastic, plastic, and viscoplastic parameters of the matrix and the tensile strength of the fiber...
Abstract
The goal of micromechanics and analysis is to use the predictive methodology to develop tailored composites and also to make accurate predictions of their performance in service. This article reviews results derived from micromechanics analyses, based on finite-element method of unidirectional fiber reinforced metal matrix composites (MMCs). It discusses the elastic deformation and elastic-plastic deformation analysis of discontinuously reinforced MMCs. The article provides an overview of analysis of strength, fatigue, and fracture toughness for macromechanics fiber-reinforced and discontinuous reinforced composites.
1