1-20 of 43 Search Results for

multiaxial stress

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed. ductile fracture multiaxial stress stress-strain curve workability WORKABILITY refers to the relative ease with which a metal can be shaped through plastic deformation...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005947
EISBN: 978-1-62708-166-5
...) after austenitizing at 1050 °C (1920 °F) and oil quenching. Source: Ref 4 Yielding occurs if the equivalent stress, which generally can be calculated from the multiaxial stress state, becomes larger than the yield stress. The exceeding stresses will be recovered by plastic deformation. (For...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... calculate maximum load capability (e.g., multiaxial yield criteria). One failure mode theory is the Rankine (or maximum normal stress) criterion, where the maximum principal stress is used. The other is the Tresca theory based on the maximum shear stress. The Rankine criterion holds that inelastic...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... Abstract This article describes some of the mechanical/ electrochemical phenomena related to the in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... type, sequence, magnitude, and number of the fluctuating (multiaxial) stresses often in combination with complex environmental influences (temperature, corrosion, wear). These factors complicate the laboratory simulation of actual application conditions and often require full-sized component tests...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts. brittle fracture crack nucleation...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... mechanical properties of engineering plastics. The testing methods for determining mechanical properties, including stress-strain test, modulus-directed tensile test, strength test, strength-directed tensile test, impact test, and dynamic mechanical test are discussed. crystallinity engineering...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... nonuniform mechanical properties. Up to this point it has been assumed that the test specimen was loaded uniaxially in either tension or compression. However, in some workability tests such as the torsion test the stress system is multiaxial. More generally, it is rare to find the stresses acting on the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003060
EISBN: 978-1-62708-200-6
...: Predict the strength degradation of certain materials ( Fig. 5 , 6 ) Predict the reliability of a component that has undergone proof testing Predict the effect of multiaxial stresses on reliability Estimate fatigue parameters from naturally flawed specimens ruptured under static, cyclic, or...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
... nucleated, the lower shear stress (and increasingly compressive normal stresses) slows crack propagation. These evolving stresses are rarely considered during bearing life prediction due to the difficulty of predicting them. The cyclic multiaxial stress state associated with RCF leads to several changes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... Volume. The yield stress is generally taken as the critical value at which plastic deformation initiates. In uniaxial tension, it is clear when the applied stress reaches the yield point. However, for more complex multiaxial stress states, the point at which yield is anticipated may not be as clear...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005419
EISBN: 978-1-62708-196-2
... complicated. The geometry of the crack or the component that contains the crack will have a significant influence on the stress-intensity factor ( Eq 1 ) of the crack, affecting the speed that the crack will grow. Simple closed-form approximations exist ( Ref 2 ) for many of the crack shape geometries and...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... microstructure-sensitive fatigue modeling. fatigue modeling high-cycle fatigue fracture mechanics fatigue damage crack nucleation microstructurally small crack propagation microstructure-sensitive modeling fatigue crack initiation HISTORICALLY, local stress-based criteria for high-cycle fatigue...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003224
EISBN: 978-1-62708-199-3
...; and ϵ f is the fracture strain. This equation must be used carefully. Critical stresses and strains should be determined under multiaxial conditions to replicate crack-tip conditions. Generally, fracture toughness decreases with increasing strength since both n and ϵ f decrease with increasing...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... dimensional change of a plastic part over the course of time when subjected to a constant load also depends on the state of stress itself ( Ref 14 , 15 , 24 , 25 ). The actual state of stress on an in-service plastic article is probably a multiaxial combination of tensile, shearing, and/or compressive...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... mechanical behavior of materials is described by their deformation and fracture characteristics under applied tensile, compressive, or multiaxial stresses. Determination of this mechanical behavior is influenced by several factors that include metallurgical/material variables, test methods, temperature, and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003021
EISBN: 978-1-62708-200-6
.... The most frequently used types of snap joints are cantilever ( Fig. 12 , 13 , 14 ), in which the load is mainly flexural; torsion ( Fig. 15 ), in which shear stresses carry the load; and annular ( Fig. 16 ), which are rotationally symmetrical and involve multiaxial stresses. Fig. 12 Module for...