Skip Nav Destination
Close Modal
Search Results for
monotectics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6 Search Results for
monotectics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006227
EISBN: 978-1-62708-163-4
... Abstract Monotectic alloys can be classified based on the difference between the critical temperature and the monotectic temperature. This article begins with a schematic illustration of monotectic reaction in copper-lead system. It discusses the solidification structures of monotectics and...
Abstract
Monotectic alloys can be classified based on the difference between the critical temperature and the monotectic temperature. This article begins with a schematic illustration of monotectic reaction in copper-lead system. It discusses the solidification structures of monotectics and illustrates the monotectic solidification for low-dome alloys. The forming mechanism of the banded structure of copper-lead alloy in upward directional solidification is also described.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005228
EISBN: 978-1-62708-187-0
... (AGHF), a multizone furnace developed by ESA. Three aluminum-indium alloys were directionally solidified in the AGHF to study the physics of solidification processes in immiscible monotectic alloys. Three samples, which differed in indium content, were processed at the same growth rate to permit...
Abstract
Gravity has profound influences on most solidification and crystal growth processes. Modification of gravity over practical time scales for the purposes of modifying or controlling solidification proves to be a far more daunting and expensive technological challenge. This article discusses various microgravity solidification experiments that involve pure metals, alloys, and semiconductors and presents the official NASA acronyms for them. The experiments include MEPHISTO, TEMPUS, isothermal dendritic growth experiment, and advanced gradient heating facility.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005218
EISBN: 978-1-62708-187-0
... gallium-indium eutectics ( Ref 10 , 11 ), hydrogen porosity formation in aluminum-copper ( Ref 12 ), and liquid droplet formations, striations, and engulfment in aluminum-base monotectics ( Ref 13 , 14 ) reporting Δ r ∼ 25 to 30 μm. In a recent real-time in-house study of metal foaming, Δ r ∼ 5 μm was...
Abstract
Metal transparency and interaction with X-rays have been recognized as obvious candidate principles from which methods for in situ monitoring of solidification processes could be developed. This article describes the use of X-ray imaging-based techniques to investigate interface morphology evolution, solute transport, and various process phenomena at spatiotemporal resolutions. It discusses the three viable imaging techniques made available by synchrotron radiation for the real-time investigation of solidification microstructures in alloys. These include two-dimensional X-ray topography, two-dimensional X-ray radiography, and ultra-fast three-dimensional X-ray tomography.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006222
EISBN: 978-1-62708-163-4
..., peritectic, and monotectic reactions that are covered elsewhere in this Volume. Solid-state phase transformations occur when one or more parent phases, usually on cooling, produces a new phase or phases. The most important mechanisms are nucleation, growth, and diffusion. However, not all transformations...
Abstract
This article begins with the one-component, or unary, diagram for magnesium. The diagram shows what phases are present as a function of the temperature and pressure. When two metals are mixed in the liquid state to produce a solution, the resulting alloy is called a binary alloy. The article describes the various types of solid solutions such as interstitial solid solutions and substitutional solid solutions. Free energy is important because it determines whether or not a phase transformation is thermodynamically possible. The article discusses the thermodynamics of phase transformations and free energy, as well as kinetics of phase transformations. It concludes with a description of solid-state phase transformations that occur when one or more parent phases, usually on cooling, produces a phase or phases.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
... Eutectic alloy systems Peritectic alloy systems Monotectic alloy systems Application of phase diagrams also is instrumental in understanding solid-state transformations for the processing and heat treatment of alloys. The following sections provide brief introductions on various types of alloy...
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005207
EISBN: 978-1-62708-187-0
... illustrated in Fig. 3 also show the common characteristic for a metastable phase to exhibit a higher solubility for solute than the equilibrium stable-phase solution. Similar behavior is found for the cases of peritectic and monotectic solidification reactions ( Ref 2 ). Fig. 3 Eutectic phase diagram...
Abstract
This article discusses selected highlights of thermodynamic relationships during solidification and nucleation kinetics behavior in connection with the basis of nucleation treatments, such as grain refinement and inoculation, to provide a summary of nucleation phenomena during casting. Nucleation during solidification is a thermally activated process involving a fluctuational growth in the sizes of clusters of solids. The article describes nucleation phenomenon such as homogeneous nucleation and heterogeneous nucleation. It discusses various grain refinement models, such as carbide-boride model, free growth model, and constitutional undercooling model. The article concludes with a section on thermal analysis techniques for assessing grain-refining characteristics during master alloy processing.