1-20 of 203 Search Results for

monolithic structures

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... Abstract Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... Abstract This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003684
EISBN: 978-1-62708-182-5
...%, thus creating internal stresses in the structure in which it was used. As a result, monolithic linings and brick surfaces would sometimes crack or spall. As time passed, industry required silicate technologies that would meet changing applications and structural designs. By the 1950s, potassium...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009083
EISBN: 978-1-62708-177-1
... Abstract Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001317
EISBN: 978-1-62708-170-2
..., such as alumina, silica-alumina, zeolites, titanium oxide, and carbon in powder or particulate form Inert carriers, such as silica, in powder or particulate form Structural supports, such as the monoliths upon which catalyzed carriers are deposited The most important catalyst supports for experimental...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
... Abstract Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
... Ceramics Monolithic ceramics are inherently brittle due to their strong bonding and more complicated (less symmetric) crystal structures. Compared to metallic materials, the mixed ionic and covalent atomic bonding and low-symmetry crystal structure of ceramics severely limit the opportunity...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... as intermetallics. These materials typically possess lower ductility and fracture toughness than the conventional monolithic structural materials, both of which affect the deformation-processing characteristics. Composite systems may combine metals with other metals or ceramics that have large differences in flow...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001383
EISBN: 978-1-62708-173-3
... brakes, machine-tipped tools, and press tool dies are also considered to be potential friction-surfacing applications. Fig. 4 Geometric arrangements for friction surfacing Monolithic Structures Friction surfacing has now been applied to a wide range of monolithic deposit/substrate...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... fracture characteristic of monolithic materials. However, the matrix cracking stress of reinforced ceramics is generally lower than the fracture stress of monolithic ceramics. There have been major developments in the area of ceramic reinforcement materials ( Ref 2 ). Advanced materials used...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003486
EISBN: 978-1-62708-195-5
... as cutting tool inserts. The development of these composite tool materials was partially based on the advances in high-temperature monolithic ceramic materials and processing technology developed for automotive gas turbine and other high-temperature structural applications. Table 1 compares the room...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003839
EISBN: 978-1-62708-183-2
... properties. Interaction of the MMC with the environment is normally a secondary consideration, and therefore, it is not uncommon for MMCs to have lower resistance to corrosion than their monolithic-matrix alloys. The earliest literature on the corrosion of MMCs, which appeared in the late 1960s...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... of materials designed to retain the attractive properties of monolithic ceramics, while enhancing their reliability for structural applications. Although strictly speaking almost any multiphase ceramic can be classified as a DR-CMC, the materials referred to in this section are those in which discrete...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
...), intermetallic, or titanium-matrix composite structures. Conventional alloys can be further subdivided, on the basis of the amount of beta phase that is present, into four families: near-alpha, alpha-beta, near-beta, or metastable-beta ( Table 1 ). Intermetallics that are based on titanium most commonly include...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006452
EISBN: 978-1-62708-190-0
..., then the time axis of an A-scan can be scaled to depth and echoes interpreted as reflections from scatterers at different depths. In this article, single transducers are termed monolithic. If a monolithic transducer is translated over the surface of the component, A-scans from adjacent positions can...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002417
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the understanding of the mechanisms and mechanical effects of fatigue processes in highly brittle materials, with particular emphasis on ceramics. It provides a discussion on room-temperature fatigue crack growth in monolithic ceramics, transformation-toughened...
Book Chapter

By Don O. Evans
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003410
EISBN: 978-1-62708-195-5
...-22 Osprey. This part was designed to take advantage of the unique capabilities of fiber placement. The first four prototype V-22 aft fuselages were made from nine hand-laid sections. Switching to single-fiber-placed monolithic structure cut the number of fasteners by 34%, and cut the trim...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006037
EISBN: 978-1-62708-172-6
... ), published by SSPC: The Society for Protective Coatings (formerly the Steel Structures Painting Council); EN 1504 ( Ref 4 ), from European Standards (EN); ACI 515.2 ( Ref 5 ), published by the American Concrete Institute; MIL 3134-J ( Ref 6 ), a U.S. military standard; plus the joint technical committee...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... analyzing structural components. The three-parameter form of the Weibull distribution was presented earlier in Eq 30 and 31 . The additional parameter is a threshold stress (γ) that allows for zero probability of failure when the applied stress is at or below the threshold value. Certain monolithic...